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A B S T R A C T

CXC chemokine receptor 1 (CXCR1) is an important regulator for neutrophil granulocyte activation through 
binding to the ligand interleukin-8 (IL-8). Upon binding to IL-8, CXCR1 activates downstream signaling, critical 
for innate and adaptive immune responses. The IL-8-CXCR1 axis also plays an important role in tumor pro-
gression, especially in the tumor microenvironment. CXCR1 antagonists or anti-IL-8 monoclonal antibodies 
(mAbs) have been developed and evaluated in clinical trials for inflammatory diseases and tumors. In this study, 
we developed novel mAbs for mouse CXCR1 (mCXCR1) using the N-terminal peptide immunization. Among the 
established anti-mCXCR1 mAbs, Cx1Mab-8 (rat IgG2b, kappa) recognized mCXCR1-overexpressed Chinese 
hamster ovary-K1 (CHO/mCXCR1) and mCXCR1-overexpressed LN229 (LN229/mCXCR1) by flow cytometry. 
The dissociation constant (KD) values of Cx1Mab-8 for CHO/mCXCR1 and LN229/mCXCR1 were determined as 
4.1 × 10− 10 M and 1.5 × 10− 9 M, respectively. These results indicated that Cx1Mab-8 is useful for detecting 
mCXCR1 by flow cytometry with high affinity and could contribute to obtaining the proof of concept in pre-
clinical studies.

1. Introduction

CXC chemokine receptor 1 (CXCR1) is a G protein-coupled receptor 
that plays an essential regulatory role in migration and activation of 
neutrophil granulocytes [1]. CXCR1 serves as a receptor for 
interleukin-8 (IL-8, also known as C-X-C motif chemokine ligand 8), a 
central mediator of immune and inflammatory responses involved in 
many disorders including cancer [2]. Upon binding to IL-8, CXCR1 
triggers a rapid and transient increment of free calcium in neutrophil 
granulocytes through a GTP-binding protein [2], which results in the 
migration to the sites of tissue damage or infection [3]. The attracted 
neutrophil granulocytes kill and phagocytose bacteria at the sites of 
inflammation. Furthermore, the IL-8-CXCR1 axis plays an essential role 
in the tumor microenvironment to promote inflammation and resistance 
to immunotherapy [4]. Therefore, the blockade of the IL-8-CXCR1 axis is 
a promising strategy to improve antitumor efficacy in combination with 
other immunotherapies [5].

The activation of CXCR1 involves both N-terminal residues and 
extracellular loops [3,6]. The structure of human CXCR1 in a lipid 
bilayer was solved using nuclear magnetic resonance spectroscopy, 
which facilitated molecular modeling and the understanding of in-
teractions with small molecule inhibitors [7]. The structure of CXCR1 
complexed with IL-8 and Gαi1 protein was solved using cryo-EM [8]. 
The CXCR1 N-terminal residues fit loosely into an IL-8 groove to form 
the interaction surface chemokine recognition site 1 (CRS1) [8]. 
Therefore, monoclonal antibodies (mAbs) that recognize the CXCR1 
N-terminus are expected to neutralize the IL-8 binding.

We have developed anti-mouse chemokine receptor mAbs against 
CXCR1 (clone Cx1Mab-1) [9], CXCR3 (clone Cx3Mab-4) [10], CXCR4 
(clone Cx4Mab-1) [11], CCR1 (clone C1Mab-6) [12], CCR3 (clones 
C3Mab-2, C3Mab-3, and C3Mab-4) [13–15], CCR5 (clone C5Mab-2) [16], 
CCR8 (clones C8Mab-1, C8Mab-2, and C8Mab-3) [17–19], using the 
Cell-Based Immunization and Screening (CBIS) method. The CBIS 
method includes immunizing antigen-overexpressed cells and 
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high-throughput hybridoma screening using flow cytometry. Further-
more, we established anti-murine chemokine receptor mAbs against 
CCR2 (clone C2Mab-6) [20], CCR3 (clones C3Mab-6 and C3Mab-7) [21], 
CCR4 (clone C4Mab-1) [22], CCR5 (clones C5Mab-4 and C5Mab-8) [23], 
CCR9 (clone C9Mab-24) [24], CXCR6 (clone Cx6Mab-1) [25], and 
ACKR4 (clones A4Mab-1, A4Mab-2, and A4Mab-3) [26] using the 
N-terminal peptide immunization.

In this study, a high-affinity anti-mouse CXCR1 (mCXCR1) mAb was 
developed by N-terminal peptide immunization.

2. Materials and methods

2.1. Cell lines and plasmids

LN229, Chinese hamster ovary (CHO)–K1, and P3X63Ag8U.1 (P3U1) 
cell lines were sourced from the American Type Culture Collection 
(ATCC, Manassas, VA).

A pCMV6neo-myc-DDK plasmid carrying mCXCR1 (Accession No.: 
NM_178241) was obtained from OriGene Technologies, Inc. (Rockville, 
MD).

CHO–K1, mCXCR1-overexpressed CHO–K1 (CHO/mCXCR1), and 

P3U1 cells were maintained in RPMI-1640 medium (Nacalai Tesque, 
Inc., Kyoto, Japan). LN229 and mCXCR1-overexpressed LN229 (LN229/ 
mCXCR1) were cultured in DMEM (Nacalai Tesque, Inc.). The media 
were supplemented with 10% FBS, 100 U/mL penicillin, 100 μg/mL 
streptomycin, and 0.25 μg/mL amphotericin B (Nacalai Tesque, Inc.). 
All cell cultures were maintained at 37 ◦C in a humidified incubator with 
5% CO2 and 95% air.

2.2. Peptides

A partial sequence of the N-terminal extracellular domain of 
mCXCR1 (1-MAEAEYFIWTNPEGDFEKE-19) with an additional C-termi-
nal cysteine was synthesized by Eurofins Genomics KK (Tokyo, Japan). 
The peptide was conjugated to keyhole limpet hemocyanin (KLH) at its 
C-terminus.

2.3. Production of hybridomas

A five-week-old Sprague–Dawley rat was sourced from CLEA Japan 
(Tokyo, Japan). The experimental procedures received approval from 
the Animal Care and Use Committee of Tohoku University (Permit No.: 

Fig. 1. A schematic procedure of anti-mCXCR1 mAbs production. (A) mCXCR1 N-terminal peptide conjugated with KLH (mCXCR1-KLH) was immunized into a 
Sprague–Dawley rat. The spleen cells were fused with P3U1 cells. (B) To select anti-mCXCR1 mAb-producing hybridomas, the supernatants were screened by ELISA 
and flow cytometry using CHO–K1 and CHO/mCXCR1 cells. (C) After limiting dilution, an anti-mCXCR1 mAb, Cx1Mab-8, was finally established. ELISA, enzyme- 
linked immunosorbent assay.
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2022MdA-001) and adhered to the NIH (National Research Council) 
Guide for the Care and Use of Laboratory Animals.

The rat was immunized intraperitoneally with 100 μg of KLH- 
conjugated mCXCR1 peptide (mCXCR1-KLH) combined with 2% Alhy-
drogel adjuvant (InvivoGen). The immunization regimen consisted of 
three additional weekly doses (100 μg per rat) and a final booster dose 
(100 μg per rat) administered two days before the collection of spleen 
cells. Spleen cells were harvested and fused with P3U1 cells using 
PEG1500 (Roche Diagnostics, Indianapolis, IN). The supernatants were 
screened using enzyme-linked immunosorbent assay (ELISA) with the 
mCXCR1 peptide, followed by flow cytometry analysis with CHO/ 
mCXCR1 and CHO–K1 cells.

2.4. Antibodies

Alexa Fluor 488-conjugated anti-rat IgG and peroxidase-conjugated 
anti-rat IgG were obtained from Cell Signaling Technology, Inc. (Dan-
vers, MA) and Sigma-Aldrich Corp. (St. Louis, MO), respectively.

2.5. ELISA

The mCXCR1 peptide (MAEAEYFIWTNPEGDFEKEC) was immobi-
lized onto Nunc Maxisorp 96-well plates (Thermo Fisher Scientific Inc.). 
The wells were blocked with PBS containing 0.05% Tween 20 and 1% 
bovine serum albumin (BSA). Following this, the plates were incubated 
with supernatants from hybridoma cultures, followed by peroxidase- 
conjugated anti-rat IgG at a dilution of 1:20,000. The enzymatic re-
actions were subsequently carried out using the ELISA POD Substrate 
TMB Kit (Nacalai Tesque, Inc.).

2.6. Flow cytometric analysis

Cells were collected following brief treatment with 0.25% trypsin 
and 1 mM ethylenediaminetetraacetic acid (EDTA; Nacalai Tesque, 
Inc.). Afterward, the cells were rinsed with a blocking buffer of 0.1% 
BSA in PBS and incubated with varying concentrations (0.01, 0.1, 1, and 
10 μg/mL) of Cx1Mab-8 for 30 min at 4 ◦C. Subsequently, the cells were 
exposed to Alexa Fluor 488-conjugated anti-rat IgG diluted to 1:2,000. 
Fluorescence measurements were then obtained using the SA3800 Cell 
Analyzer (Sony Corp.).

2.7. Determination of dissociation constant (KD) by flow cytometry

CHO/mCXCR1 cells were incubated in a series of diluted solutions of 
Cx1Mab-8 for 30 min at a temperature of 4 ◦C. Following this, the cells 
were treated with Alexa Fluor 488-conjugated anti-rat IgG at a dilution 
of 1:200. Fluorescence measurements were then obtained using the 
SA3800 Cell Analyzer. The KD was determined by GraphPad PRISM 6 
software (GraphPad Software, Inc., La Jolla, CA).

3. Results

3.1. Development of Anti-mCXCR1 mAbs using the immunization of N- 
terminal peptide

To generate anti-mCXCR1 mAbs, a rat was immunized with 
mCXCR1-KLH (Fig. 1A). Following immunization, the spleen was 
excised from the rat, and the splenocytes were fused with myeloma 
P3U1 cells. The resulting hybridomas were then plated into ten 96-well 

Fig. 2. Flow cytometric analysis of Cx1Mab-8 against CHO/mCXCR1 and CHO–K1. CHO/mCXCR1 (A) and CHO–K1 cells (B) were treated with 0.01–10 μg/mL of 
Cx1Mab-8, followed by Alexa Fluor 488-conjugated anti-rat IgG. Fluorescence data were subsequently collected using the SA3800 Cell Analyzer.
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plates and cultured for six days. Subsequently, positive wells to the 
mCXCR1 peptide were identified using ELISA, followed by the selection 
of supernatants that were reactive to CHO/mCXCR1 and non-reactive to 
CHO–K1 via flow cytometry (Fig. 1B). The ELISA screening revealed that 
102 out of 958 wells (10.6%) exhibited a strong reaction with the 
mCXCR1 peptide. Flow cytometric analysis further identified 8 out of 
these 102 wells (7.8%) that demonstrated strong signals with CHO/ 
mCXCR1 cells but not with CHO–K1 cells. After conducting limiting 
dilution and several additional screenings, Cx1Mab-8 (rat IgG2b, kappa) 
was successfully established (Fig. 1C).

3.2. Flow cytometry using Cx1Mab-8

We conducted flow cytometry using Cx1Mab-8 against CHO/ 
mCXCR1 and CHO–K1 cells. Cx1Mab-8 dose-dependently recognized 
CHO/mCXCR1 cells at 10, 1, 0.1, and 0.01 μg/mL (Fig. 2A). Cx1Mab-8 
did not recognize parental CHO–K1 cells even at 10 μg/mL (Fig. 2B). The 
similar reactivity of Cx1Mab-8 was also observed in LN229/mCXCR1 
cells (Fig. 3).

3.3. The binding affinity of Cx1Mab-8

We conducted flow cytometry to determine the KD values of Cx1Mab- 
8 against CHO/mCXCR1 and LN229/mCXCR1. The average KD values of 
Cx1Mab-8 for CHO/mCXCR1 and LN229/mCXCR1 from two indepen-
dent measurements (Fig. S1) were determined as 4.1 × 10− 10 M and 1.5 
× 10− 9 M, respectively (Fig. 4).

We cloned the cDNA of Cx1Mab-8 variable regions and showed 
amino acid sequences of complementarity-determining regions (Fig. 5).

4. Discussion

In this study, we developed a novel anti-mCXCR1 mAb, Cx1Mab-8, 
using the N-terminal peptide immunization and showed the usefulness 
of flow cytometry (Figs. 2 and 3) to detect mCXCR1. Cx1Mab-8 possess 
superior affinities: 4.1 × 10− 10 M (CHO/mCXCR1) and 1.5 × 10− 9 M 
(LN229/mCXCR1), respectively (Fig. 4) compared to that of a previously 
established anti-mCXCR1 mAb, Cx1Mab-1: 2.6 × 10− 9 M (CHO/ 
mCXCR1) and 2.1 × 10− 8 M (LN229/mCXCR1) [9].

As described in the result section, less than 10% of ELISA-positive 
supernatants recognized CHO/mCXCR1 in flow cytometry. One 
possible explanation is a disulfide bond connecting the CXCR1 N-ter-
minus (Cys30 in humans) to the extracellular start of transmembrane 7 
(Cys277) [7,8]. The Cys pair is highly conserved in the chemokine re-
ceptors and is essential for ligand binding. Furthermore, it plays a crit-
ical role in shaping the extracellular structure of the chemokine 
receptors and provides a restriction for the structure formation. There-
fore, determining the Cx1Mab-8 epitope is essential to understand the 
recognition of mCXCR1. We previously identified the Cx6Mab-1 epitope 
using 1 × and 2 × alanine scanning methods [27]. Future studies should 
focus on determining the epitope of Cx1Mab-8.

The N-terminus of chemokine receptors plays an essential role in 
chemokine specificity. Structural studies have shown that the receptor 
N-terminus binds to the chemokine core at an interface of CRS1. In 
contrast, the chemokine N-terminus fits within a pocket of the receptor’s 
TM helical domain (called CRS2) [28,29]. HuMax-IL8 (BMS-986253) is 
a fully human monoclonal antibody against IL-8. HuMax-IL8 inhibits 
tumor progression by suppressing IL-8-mediated epi-
thelial-mesenchymal transition, immune escape, and recruitment of 
myeloid-derived suppressor cells [30]. A clinical trial is currently 

Fig. 3. Flow cytometric analysis of Cx1Mab-8 against LN229/mCXCR1 and LN229. LN229/mCXCR1 (A) and LN229 cells (B) were treated with 0.01–10 μg/mL of 
Cx1Mab-8, followed by Alexa Fluor 488-conjugated anti-rat IgG. Fluorescence data were subsequently collected using the SA3800 Cell Analyzer.
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underway in hormone-sensitive prostate cancer, examining its combi-
nation with nivolumab in patients with rising prostate-specific antigen 
[31]. Although CXCR1 antagonists such as navarixin and reparixin have 
been developed for asthma, pneumonia, and solid tumors [5], mAb 
therapy using anti-CXCR1 has not been explored. Further studies are 
needed to investigate the neutralizing activity of Cx1Mab-8 against 

murine IL-8 orthologues, including KC, MIP-2, and LIX [32]. Since we 
successfully identified the complementarity-determining regions of 
Cx1Mab-8 (Fig. 5), class-switched mAbs of Cx1Mab-8 to mouse immu-
noglobulins could facilitate preclinical studies for inhibiting mCXCR1 or 
depletion of mCXCR1-positive cells in mouse models.
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