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Abstract

Glioblastoma (GBM) is themost common and lethal primary
malignant brain tumor in adults with a 5-year overall survival
rate of less than 10%. Podoplanin (PDPN) is a type I trans-
membrane mucin-like glycoprotein, expressed in the lymphatic
endothelium. Several solid tumors overexpress PDPN, includ-
ing the mesenchymal type of GBM, which has been reported to
present the worst prognosis among GBM subtypes. Chimeric
antigen receptor (CAR)–transduced T cells can recognize pre-
defined tumor surface antigens independent of MHC restric-
tion, which is often downregulated in gliomas. We constructed
a lentiviral vector expressing a third-generation CAR compris-

ing a PDPN-specific antibody (NZ-1–based single-chain vari-
able fragment) with CD28, 4-1BB, and CD3z intracellular
domains. CAR-transduced peripheral blood monocytes were
immunologically evaluated by calcein-mediated cytotoxic
assay, ELISA, tumor size, and overall survival. The generated
CART cellswere specific and effective against PDPN-positiveGBM
cells in vitro. Systemic injection of the CAR T cells into an
immunodeficient mouse model inhibited the growth of intracra-
nial glioma xenografts in vivo. CAR T-cell therapy that targets
PDPN would be a promising adoptive immunotherapy to treat
mesenchymal GBM. Cancer Immunol Res; 4(3); 259–68. �2016 AACR.

Introduction
Glioblastoma (GBM) is the most common and lethal primary

malignant brain tumor in adults. Aftermaximal surgical resection,
the current standard of care is concurrent radiotherapy and the
alkylating agent temozolomide (TMZ), followed by adjuvant
TMZ (1). Despite the improvement in outcomes with this com-
bined chemoradiotherapy approach, the median survival is 14.6
months and 5-year overall survival (OS) rates are less than 10%
(1). Thus, novel therapies are required to improve patient
survival.

In recent years, immunotherapy has emerged as a promising
strategy for the treatment of GBM (2). The first generation of
chimeric antigen receptors (CAR) were recombinant receptors that

consisted of an extracellular domain derived from a single-chain
variable fragment (scFv) taken from a tumor antigen–specific
monoclonal antibody (mAb), a transmembrane domain, and a
cytoplasmic signaling domain from the CD3z chain, a subunit of
the T-cell receptor complex (3). CAR-transduced T cells can
recognize predefined tumor surface antigens independent of the
major histocompatibility complex (MHC) restriction, which is
often downregulated in gliomas (4). CARs can be designed to
bind not only to proteins, but also to carbohydrate and glyco-
lipid structures (5). Second-generation CARs, which incorporate
a single costimulatory signaling domain such as CD28 (6, 7),
CD137 (4-1BB; refs. 6, 8), or CD134 (OX40; refs. 6, 8), have also
been generated. T cells transduced with a CAR containing the
CD28 signaling domain could enhance IL2 production (7),
sustain T-cell proliferation (7), and resist immune suppression
mediated by transforming growth factor-b (TGFb) and regulatory
T cells (Treg; ref. 9). The inclusion of domains derived from
the tumor necrosis factor receptor family members 4-1BB and
OX40 into CARs has also been shown to enhance the cytotoxicity
of CAR-transduced T cells (8). Third-generation CARs, combining
two costimulatory domains, such as CD28 and 4-1BB, have been
described and are highly likely to lyse tumor cells (10). Adoptive
transfer of CAR-transduced T cells has been clinically applied in
the treatment of CD19-positive leukemia and lymphoma (11, 12)
as well as GD2-positive neuroblastoma (13). These data provide
a strong rationale for the pursuit of CAR T-cell therapy for
other types of cancers, such as GBM. We and other groups have
generated several CARs against the antigens expressed in GBM,
including epidermal growth factor receptor variant III (EGFRvIII;
ref. 14), human epidermal growth factor receptor 2 (HER2;
ref. 15), IL13 receptor alpha 2 (IL13Ra2; ref. 16), and ephrin
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type A receptor 2 (EphA2; ref. 17). In addition, CAR-transduced
T cells can migrate through the microvascular walls and penetrate
tumors (14, 16). Clinical trials are ongoing using CAR T-cell
therapy against GBM targeting EGFRvIII and HER2 (18, 19).
Patient enrollment is completed for clinical trials targeting
IL13Ra2 (20).

Podoplanin (PDPN) is a type I transmembrane mucin-like
glycoprotein expressed in the lymphatic endothelium. It is over-
expressed in several solid tumors, such as squamous cell carci-
noma (21), malignant mesothelioma (22), Kaposi sarcoma,
angiosarcoma (23), testicular seminoma (24), and brain tumors
(25). PDPN expression is associated with malignant progression
(25–27), epithelial–mesenchymal transition (27), andmetastasis
(26). In glial tumors, PDPN expression is positively correlated
with tumor malignancy (25). PDPN is primarily expressed in the
mesenchymal type of GBM, which presents the worst prognosis
among GBM subtypes (28, 29). We previously produced a highly
reactive mAb to PDPN, called NZ-1 (30), and its recombinant
scFv (31).

In the current study, we generated a third generation of CAR
that targeted PDPN, by using the NZ-1-based scFv. We report the
generation of human CAR T cells that were specific and effective
against PDPN-positive GBM cells in vitro and that, when infected
systemically, inhibited the growth of intracranial glioma xeno-
grafts in vivo.

Materials and Methods
Cell lines

The human GBM cell lines LN319, U87MG, U251MG, T98,
YKG-1, and SK-MG-1 were maintained in Dulbecco's Modi-
fied Eagle Medium (DMEM; Sigma-Aldrich) containing 10%
heat-inactivated fetal bovine serum (FBS; Life Technologies),
100 units/mL of penicillin, and 100 mg/mL of streptomycin (Life
Technologies) at 37�C in a humidified atmosphere of 5% CO2.
U251MG, T98, and SK-MG-1 cells were purchased fromAmerican
Type Culture Collection in 1995. YKG-1 and LN319 cells were
gifts fromDrs. H. Kanno (Yokohama City University, Yokohama,
Japan) in 2005 and W. K. Cavenee (Ludwig Institute for Cancer
Research, San Diego, CA) in 2002, respectively. The cell lines
were authenticated by the letters when they were provided.
The GBM-initiating cells GIC0222 were cultured in Neurobasal
Medium (Life Technologies) supplemented with 2 mmol/L of
L-glutamine (Sigma-Aldrich), N-2 and B-27 supplements
(Life Technologies), recombinant human FGF basic and EGF
(16.7 ng/mL each; R&D Systems), 100 units/mL of penicillin,
and 100 mg/mL of streptomycin (Life Technologies) at 37�C in a
humidified atmosphere of 5% CO2. Primary cultured GBM cells
(pcGBM) were from the GBM tissue sample obtained from a
patient undergoing surgery at the Nagoya University Hospital,
Japan, after obtaining written informed consent. The study was
approved by our institutional review board. The dissociation
procedures have been described elsewhere (32). pcGBM cells
were maintained in DMEM at 37�C in a humidified atmosphere
of 5% CO2.

PDPN knockout (KO) LN319 and U87 (PDIS-6 and PDIS-7,
respectively) cells were established using the clustered regularly
interspaced short palindromic repeats (CRISPR)/CRISPR-associ-
ated (Cas) system. CRISPR/Cas plasmids, which target the
sequence GACACTGAGACTACAGGTTTGG of human PDPN,
were obtained from Sigma-Aldrich. The CRISPR/Cas plasmid was

transfected into LN319andU87MGcells using aGenePulser Xcell
electroporation system (Bio-Rad Laboratories Inc.). Single-cell
cloning was performed by limiting dilution in 96-well plates
using 10% FBS/DMEM medium, and PDPN expression was
assessed by flow cytometry using the NZ-1 mAb. The transfec-
tion-cloning cycles were repeated until the complete lack of NZ-1
reactivity was reached. The stable nature of the knockout cells was
confirmed by the lack of NZ-1 reactivity after more than 10
passages.

PDPN expression in public databases
PDPN mRNA expression data from a microarray of normal

tissues were obtained from a public database, BioGPS Dataset
Library (http://biogps.org/dataset/; ref. 33). PDPN expression in
GBM subtypes was obtained from the UCSC Cancer genome
browser (https://genome-cancer.ucsc.edu/; ref. 34).

PDPN immunohistochemical staining
The 10% formalin-fixed, paraffin-embedded surgical samples

from 79 patients newly diagnosed with GBM were collected for
immunohistochemical analysis. Immunohistochemical stain-
ing was performed as previously described (35). An anti-PDPN
mAb (1:5,000, clone NZ-1.2, rat IgG2a) was used to detect
PDPN. For each immunostained slide, the percentage of pos-
itively stained GBM cells on a given slide was evaluated by two
pathologists (R. Watanabe and I. Ito). The tumors in which
stained tumor cells made up more than 50% of the tumor were
graded as positive.

PDPN immunofluorescent staining
GBM and GIC0222 cell lines were plated on a 24-well plate

containing BD BioCoat poly-L-lysine cellware 12-mm round
coverslips with 10% FBS/DMEM and incubated for 24 hours.
The coverslips were rinsed twice with phosphate-buffered
saline (PBS; Life Technologies) and placed in 4% paraformal-
dehyde phosphate buffer solution (PFA; Wako) for 15 minutes.
Blocking was performed in PBS containing 0.1% Triton X-100
(Sigma-Aldrich; PBST) with 1.5% goat serum for 1 hour at
room temperature with shaking. The coverslips were incubated
with the primary antibody NZ-1 diluted to 1 mg/mL in blocking
solution for 1 hour at room temperature with shaking followed
by three washes with PBS. The coverslips were stained using a
secondary antibody, Alexa Fluor 488 Goat Anti-Rat IgG (HþL;
Life Technologies), and DAPI solution (Dojindo) at 1:200
dilution in the blocking solution for 30 minutes in the dark,
followed by three washes with PBST. They were then mounted
onto slides. Stained cells were observed under a FV1000 con-
focal laser scanning biological microscope (Olympus), and
pictures were taken.

PDPN expression analysis by quantitative real-time RT-PCR
PDPN expression was examined using quantitative RT-PCR.

Total RNAwas prepared fromGBM cells using an RNeasyMini kit
(Qiagen). The purity was confirmed with an A260/A280 ratio
greater than 2.0. The first-strand complementary DNA (cDNA)
was synthesized using a ReverTra Ace qPCR RT Master Mix with
gDNA Remover (Toyobo). The sequences of the primers used to
detect GAPDHmRNA and PDPNmRNAwere as follows: GAPDH
forward primer (50-AGCCACATCGCTCAGACAC-30), GAPDH
reverse primer (50-GCCCAATACGACCAAATCC-30), PDPN for-
ward primer (50-AGAAGGAGCCAGCACAGG-30), and PDPN
reverse primer (50-CGCCTTCCAAACCTGTAGTC-30). RT-PCRwas
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performed by using the LightCycler 480 instrument II (Roche
Diagnostics GmbH) and THUNDERBIRD SYBR qPCR Mix
(Toyobo). The reaction solution (20 mL) consisted of 2 mL of the
template, 10 mL of THUNDERBIRD SYBR qPCR Mix (Toyobo),
1 mL of each primer (10 mmol/L), and 6 mL of distilled water. The
PCR conditions used were denaturation for 5 minutes at 95�C,
followed by 60 PCR cycles of denaturation at 95�C for 15 seconds,
annealing at 60�C for 30 seconds, and extension at 72�C for
1 minute. Respective expression levels of PDPN were normalized
to that of GAPDH in each sample using the DDCT method.

Construction of self-inactivating (SIN) lentiviral vector
The mAb NZ-1 was previously established (30). Its scFv was

then produced (31). The scFv portion in the pELNS-3C10-CAR
(36) was changed to the NZ-1–based scFv to generate pELNS-
NZ-1-CAR by gene synthesis (Genscript). In this construct, the
EF1a promoter drives the CAR fusion protein containing the
NZ-1–based scFv targeting PDPN, CD28, 4-1BB, and CD3z
domains. The mock vector was designed to harbor scramble
sequence of the scFv portion that have shown no functional
activity against glioma, breast cancer, colon cancer, and pan-
creatic cancer cell lines.

Preparation of NZ-1-CAR T and 3C10-CAR T cells
NZ-1-CAR T and 3C10-CAR T (targeting EGFRvIII; ref. 36) cells

were preparedbyproduction and transductionof lentiviral vectors.
HEK293T cells (8� 106) were plated on 175-cm2

flask at 37�C in a
humidified atmosphere of 5% CO2. At 24 hours, the SIN vector,
pMDLg/pRRE, pRSV-Rev, and pMD2.G were cotransfected by
using X-tremeGENE 9 DNA transfection Reagent (Roche Applied
Science). The supernatant was collected at 48 hours, mixed with
PEG-it Virus Precipitation Solution (5�; System Biosciences), and
incubated for 24hours at 4�C. The supernatant/PEG-itmixturewas
then centrifuged at 1,500� g for 30minutes at 4�C. The pellet was
resuspended in 1 of 10 of the original volume using cold, sterile
medium at 4�C and stored at �80�C.

Freshly harvested heparinized peripheral blood mononuclear
cells (PBMC) from healthy donors were separated over a mono-
layer of Ficoll-Paque PLUS (1,000� g for 20 minutes at 20�C; GE
Healthcare Bio-sciences AB). PBMCs were cultured in 4 mL of
AIM-V Medium (Life Technologies) with 2.5% human serum per
well of a 6-well plate coated with the anti-human CD3 mAb
(eBioscience) in the presence of IL2 (50 units/mL; PeproTech) at
37�C in a humidified atmosphere of 5% CO2 for 24 hours. Next,
the medium (3 mL/well) was gently removed without disturbing
the clustering PBMCs, and the lentiviral pELNS-NZ-1-CAR vector
supernatant (�10; 3mL/well) was added followed by culturing of
the cells for 24 hours. The medium was then replaced by fresh
medium, and the cells were cultured for 48 hours.

Flow cytometric analysis of NZ-1-CAR expression
NZ-1-CAR expression on the cell surface of PBMCs was exam-

ined using a FACSCalibur equipped with the CellQuest Pro
software (BD Biosciences). PBMCs were washed twice with PBS
containing 0.5% bovine serum albumin (BSA; Sigma-Aldrich)
and2mmol/L EDTA (Dojindo). PBMCswere then incubatedwith
biotin-AffiniPure F(ab0)2 fragment-specific goat anti-mouse IgG
(Jackson Immuno Research Laboratories) at 4�C for 30 minutes.
After washing twice, PBMCs were stained with streptavidin (SA)–
phycoerythrin (PE; BD Biosciences) at 4�C for 30 minutes in the
dark. After washing twice, PBMCs suspended in 1% PFA were

analyzed by FACSCalibur. The data were analyzed using the
WinMDI version 2.9 software (http://en.bio-soft.net/other/
WinMDI.html).

Analysis of IFNg production of effector cells
IFNg production by effector cells was measured by ELISA using

human IFNg ELISA Ready-SET-Go! (eBioscience). Effector cells
(1.0 � 106 NZ-1-CAR–transduced PBMCs or mock-transduced
PBMCs) were cocultured with 1.0 � 104 target cells (LN319,
U87MG, or T98) in each well of a 96-well plate for 24 hours.
The cell culture supernatants were then harvested and used for
ELISA. PDPN is highly expressed in LN319 cells, but not in T98
cells (30). Therefore, these cells were used as positive and negative
controls, respectively.

Intracellular cytokine staining
Intracellular cytokine staining was performed using the Cytofix/

Cytoperm plus GolgiStop kit (BD Biosciences). Effector cells (2 �
105 cells of NZ-1-CAR–transduced PBMCs or mock-transduced
PBMCs)were incubatedwith 4� 105 target cells (LN319or LN319
PDPN KO) in 200 mL RPMI-1640 (Life Technologies) along with
GolgiStop in a round-bottom, 96-well plate. Following a 4-hour
incubation at 37�C, the cells were incubated with biotin-SP-Affi-
niPure F(ab0)2 fragment-specific goat anti-mouse IgG (Jackson
Immuno Research Laboratories) at 4�C for 30 minutes. After
washing, cells were stained with SA-PE, allophycocyanin (APC)-
Cy7–conjugated mAb to human CD8, PerCP-Cy5.5–conjugated
mAb to human CD4, and APC-conjugated mAb to human
CD107a (BD Biosciences) at 4�C for 15 minutes in the dark. After
permeabilization andfixation, the cellswere stained intracellularly
with V450-conjugated mAb to human IFNg , PE-Cy7–conjugated
antitumor necrosis factor (TNF) mAb, and fluorescein isothiocy-
anate (FITC)-conjugated mAb to human IL2 (BD Biosciences) at
4�Cfor20minutes and thenwashedwithBDPerm/Wash solution.
After washing, the labeled cells were suspended in 1% PFA and
analyzed by FACSCanto II (BD Biosciences).

Cytotoxicity assay
Target cells (LN319, PDPN-KO LN319, U87MG, PDPN-KO

U87MG, and pcGBM) were suspended at a final concentration of
1.0 � 106 cells/mL and incubated with 10 mmol/L (100 times)
calcein-AM solution (Dojindo) at 37�C for 30 minutes with
occasional shaking. After washing twice, the cells were adjusted
to1.0�105 cells/mLand1.0�104 cells (100mL)were placed into
awell of a round-bottom, 96-well plate. Effector cells (NZ-1-CAR–
transduced PBMCs, 3C10-CAR–transduced PBMCs, or mock-
transduced PBMCs) were incubated for 48 hours. The cells were
then harvested and added to each well at an appropriate effector:
target ratio (50:1, 25:1, 12.5:1, 6:1, and 3:1) and incubated
at 37�C for 5 hours. After centrifugation at 300� g for 2 minutes,
75 mL of supernatant were aspirated carefully and loaded into a
96-wellwhite/clearflat-bottomplate (BDBiosciences). The absor-
bance was then measured to evaluate the tumor-killing efficacy.
Target cells in the medium with 3 mL of 10% sodium dodecyl
sulfate (SDS; Wako) were used to determine the maximum
release, and target cells alone were used to measure spontaneous
release. The percentage of specific lysis was calculated as follows:

100�(experimental release�spontaneous release)/

(maximum release�spontaneous release)
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Intracranial glioma xenograft model
Immunofluorescence and RT-PCR analyses indicated that

PDPN is highly expressed in LN319 cells. However, this cell
line is not tumorigenic in vivo (37). Thus, we utilized LN319
cells as a positive control only in in vitro experiments. U87MG
cells that are tumorigenic presented the second highest level of
PDPN expression, whereas other cell lines such as GIC0222
cells grew slowly and expressed relatively little PDPN. Thus,
U87MG cells were used in animal experiments. All animal
experiments were approved by the Nagoya University ethics
committee and performed according to our institutional ani-
mal care and use guidelines. Five- to 6-week-old NOD/Shi-scid,
IL2Rr KO Jic (NOG) female mice (Central institute for Exper-
imental Animals, Kawasaki, Japan) were used for the experi-
ments. Mice were anesthetized intraperitoneally (i.p) with 25
mg/kg body weight (BW) pentobarbital sodium (somnopentyl,
Kyoritsu). After fixing the head and incising the scalp, a burr
hole was made using an 18-gauge needle in the right side of the
skull, 2 mm lateral to the midline and 3 mm posterior to the
lateral angle of the eye. Using a 26-gauge Hamilton syringe

(Hamilton), 5.0 � 104 U87MG cells/mouse suspended in 2-mL
PBS were stereotactically injected 3.5 mm below the dura
matter through the burr hole by using a stereotactic apparatus.
Seven days after tumor inoculation, NZ-1-CAR–transduced
PBMCs or mock-transduced PBMCs (2 � 106) were suspended
in 200 mL PBS and infused intravenously (i.v.) via the tail vein.
The nontreated mice were infused with PBS alone. Survival was
monitored following the tumor inoculation.

Tumor imaging
The growth of intracranial tumors was measured by 3T

magnetic resonance imaging (MRI; MRS 3000; MR Solutions)
every other week. Each mouse was placed on an animal
holder and anesthetized with 1% to 2% isoflurane at a rate of
1.5 L/minute of air. During the examination, the respiratory
rate was monitored using a respiratory sensor connected to a
monitoring and gating system and kept at 80 to 100 breaths per
minute to the extent that was possible. Each mouse received
i.p. injection of 0.05 mmol/kg BW gadolinium-diethylenetria-
mine penta-acetic acid (Gd-DTPA; Magnevist, Bayer) for
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Figure 1.
The expression of PDPN in GBMs and cell lines. Out of 79 newly diagnosed GBM cases, 22 cases (27.8%) showed robust staining. A, 4 representative cases
(2 positive and 2 negative) are shown. B, PDPN expression was the highest in GBM mesenchymal subtypes from UCSC Cancer Genome Browser
(https://genome-cancer.ucsc.edu). C, PDPN expression in U87MG and GIC0222 was approximately 10% of that of LN319, which was used as a positive control
for PDPN, as determined by quantitative RT-PCR. T98 was almost negative. D, immunofluorescence for PDPN (green) is consistent with the results of
quantitative RT-PCR.
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contrast-enhanced MRI. Tumor volume was estimated using the
ABC/2 method as follows: An MRI slice with the largest area of
tumor was identified in the contrast-enhanced MRI. The largest
diameter (A) of the tumor on this slice was measured. Next, the
width perpendicular to (A) on the same slice was measured (B).
Finally, the approximate number of slices with tumor multi-
plied by the slice thickness (1 mm) was calculated (C). Then, A,
B, and C were multiplied and the product divided by 2, which
yielded the tumor volume in cubic millimeters.

Immunohistochemical staining in vivo
The U87MG-bearing mice treated with NZ-1-CAR or mock-

transduced PBMCs were euthanized on day 12, 22, or 38 after the
PBMC injection. Brain tissues were harvested and embedded in
optimum cutting temperature (OCTTM) compound (Sakura Fine
Technical) and frozen in liquid nitrogen. Six-micrometer-thick
frozen sections were prepared with a cryostat (CM3050S, Leica).
After drying, the sections were fixed with 4% formaldehyde. The
sections were then blocked with 1.5% normal goat serum (Vector
Laboratories) in PBS containing 0.05% Tween 20 at room tem-
perature for 1hour, andwere stainedwith rabbit anti-humanCD3
antibody (1:100, Thermo Lab Vision) diluted to 1 mg/mL. The
secondary labeled polymer from EnVision HRP kit (Dako) was
applied, and sections were incubated for 30 minutes. The sub-
strate-chromogen solution from the EnVisionHRPkit (Dako)was
applied for 10 minutes. After washing, sections were counter-
stained with hematoxylin and mounted in Multi Mount (Matsu-
nami Glass Ind).

Statistical analysis
The statistical significance of differences between two groups

was determined using the Student t test. A two-tailed P value of
<0.05 was considered statistically significant. In mouse experi-
ments, survival curves were obtained by using the Kaplan–Meier
method and compared by using the log-rank test.

Results
PDPN expression in human GBM specimens and cell lines

PDPN is expressed in lymphatic endothelial cells andbasal cells
in normal tissues (Supplementary Fig. S1A). The analysis of public

databases indicates that PDPN expression is the highest in the
placenta with a 4-fold difference with that in the brain (Supple-
mentary Fig. S1B). However, PDPN is overexpressed in several
solid tumors (21–25). In particular, PDPN expression in GBMs is
16-fold higher than that in the brain (Supplementary Fig. S1C).
First, we evaluated PDPN expression in human GBMs by immu-
nohistochemistry with the PDPN mAb, NZ-1.2. Out of 79 newly
diagnosed GBM cases, 22 cases (27.8%) showed robust, but
heterogeneous, staining. Four representative cases (2 positive and
2 negative) are presented (Fig. 1A). Although most GBM speci-
mens were not positive for PDPN, specimens presenting the
mesenchymal type of GBMspredominantly expressed PDPN (Fig.
1B). Themesenchymal type has been reported to present theworst
prognostic among GBM subtypes (28, 29). Likewise, PDPN was
not highly expressed in all human glioma cell lines used in this
study.However, quantitative RT-PCR indicated thatPDPN expres-
sion inU87MGandGIC0222 cellswas approximately 10%of that
in LN319 cells, which was used as a positive control (Fig. 1C). The
immunofluorescence analysis using the PDPN mAb confirmed
that PDPNwas expressed on the cellularmembrane of LN319 and
U87MG cells, whereas T98 cells were almost negative for PDPN
(Fig. 1D).

Construction of NZ-1-CAR T cells
We constructed a lentiviral vector tandem linked with the EF1a

promoter followed by the leader sequence (so that the product
was able to protrude extracellularly), and NZ-1–based scFv,
CD28, 4-1BB, and CD3z (Fig. 2A, the third generation). The
lentiviral vector was used to infect human PBMCs. The transduc-
tion efficiency was examined by flow cytometry with a mouse-
derived F(ab0)2–biotin antibody. The percentage of transduced
PBMCs with NZ-1 CAR was 35% to 40% (Fig. 2B). These results
were reproducible.

Functional assay of NZ-1-CAR T cells in vitro
The calcein-based nonradioisotope cytotoxic assay indicated

that PDPN-positive LN319 cells were significantly lysed by NZ-
1-CAR–transduced PBMCs in an effector:target (E:T) ratio–
dependent manner. Cytotoxic effects of NZ-1-CAR–transduced
PBMCs on PDPN-positive U87MG cells and primary cultured
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Construction of NZ-1-CAR T cells. A,
a lentiviral vector construct with the
EF1a promoter followed by the
leader sequence, NZ-1–based scFv,
CD28, 4-1BB, and CD3z. The
transduction efficiency was
examined by flow cytometry with
mouse-derived F(ab0)2 recognizing
biotin antibody. B, the efficiency was
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GBM cells (pcGBM) were not as drastic as that on LN319 cells,
but a significant specific lysis was still observed. In contrast,
specific lysis was not observed against PDPN-KO LN319 and
PDPN-KO U87MG cells (Fig. 3A). EGFRvIII-targeting (3C10)-
CAR PBMCs did not lyse LN319 cells, suggesting that cells were
not lysed nonspecifically (Supplementary Fig. S2A). These
results suggest that NZ-1-CAR T cells present PDPN-specific
cytotoxicity.

Coculture of LN319 or U87MG cells with NZ-1-CAR–trans-
duced PBMCs resulted in the production of approximately 350
to 400 pg/mL of IFNg , whereas mock-transduced PBMCs
released significantly less IFNg (Fig. 3B). Thus, we successfully
generated functional active NZ-1-CAR T cells that recognize
PDPN. CD4þ, and CD8þNZ-1-CAR T cells may secrete different
sets of cytokines. T-cell functionality (production of IFNg ,
TNFa, IL2, and CD107a) was separately analyzed for CD4þ and
CD8þ CAR T cells by FACS (Fig. 3C). IFNg , IL2, and CD107a
were predominantly produced by CD4þ CAR T cells cocultured
with LN319 and U87MG cells, whereas CD8þ CAR T cells

mainly produced TNFa. The sorted CAR T cells were subjected
to RT-PCR (Supplementary Fig. S2B). TNFa was significantly
produced in NZ-1-CAR T cells that were stimulated by LN319
cells (P < 0.01), but IL2 and CD107a were expressed even in
mock-CAR T cells, which suggested that the secretion of IL2 and
CD107a was not specific to the PDPN antigen. The mock-CAR T
cells did not produce IFNg , TNFa, IL2, or CD107a (Supple-
mentary Fig. S3).

Distribution and antitumor effect of NZ-1-CAR T cells on
human glioma in the mouse brain

After confirming the presence of intracranial tumors by MRI,
mock-transduced PBMCs or NZ-1-CAR–transduced PBMCs
were injected in the tail vein of mice. Brain tissues were
harvested and embedded in OCT compound, and the sections
were stained with rabbit antibody to human CD3 on days 12,
22, and 38 after injection (Fig. 4A). Whereas human CD3þ cells
were not found in the tumors obtained from the mock-treated
mice on day 12, CD3þ cells were still observed on day 38 in the
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tumors of NZ-1-CAR–treated mice (Fig. 4B). Thus, NZ-1-CAR T
cells spread to the brain tumor and persisted for at least 38 days
after injection.

The treatment design is summarized in Fig. 5A. On day 7 after
intracranial implantation of tumor cells, PBS, mock-transduced
PBMCs, or NZ-1-CAR–transduced PBMCswere injected in the tail
vein of the mice. The volume of gadolinium-enhanced tumors
was evaluated sequentially. In approximately 60% of the mice
treated with NZ-1-CAR PBMCs, the tumor grew markedly more
slowly than that in the other two groups (Fig. 5B and C). Median
OS durations of the three groups were 59, 56.5, and 79 days,
respectively. In addition, a log-rank test indicated that mice from
the NZ-1-CAR group survived significantly longer (Fig. 5D). The
survival curve of approximately 40% of the NZ-1-CAR mice
overlapped with those of the two control groups. We repeated
the animal experiment twice, and the results were reproducible.
The tumor growth and effective CAR T-cell proliferation may be
almost equivalent; thus, the adoptive transferred CAR T cells
started to elicit an effect around 60 days. We speculate that a

certain amount of time is required for effective T-cell proliferation,
so that the number of cells is sufficient to eradicate an intracranial
tumor through the blood–brain barrier (BBB).

Discussion
In this study, we report the construction of a third-generation

CAR that targets PDPN and its successful lentivirus-mediated
expression on human T cells. We showed that the generated T
cells were specific and effective against PDPN-positive GBM cells
in vitro, and systemic injection of the T cells significantly increased
survival time in vivo (P ¼ 0.035).

PDPN is especially expressed in themesenchymal type of GBM,
which presents the worst prognosis among GBM subtypes
(Fig. 1B; refs. 28, 29). This study and previous reports showed
that the expression of PDPN in GBMwas observed in 27.8% (this
study), 47% (25), and 31% of patients with GBM (28). Consid-
ering that PDPN is one of the factors associated with poor
prognosis, PDPN-targeted CAR T-cell therapy would be useful in
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the treatment of patientswith relapsed/resistant tumors following
first-line chemotherapy.

Recent studies focused on immune checkpoint targeting to
cytotoxic T lymphocyte–associated antigen 4 (CTLA-4) and pro-
grammed cell death protein 1 (PD-1). CTLA-4 is expressed on T
cells in which it regulates the amplitude of early stages of T-cell
activation by counteracting the activity of the T-cell costimulatory
receptor CD28 (38). Moreover, it enhances Treg immunosup-
pressive activity (39). In contrast, PD-1 limits the activity of T cells
in peripheral tissues to avoid autoimmunity (38). The same
mechanism is observed in tumor immune evasion (40). The
major PD-1 ligand, PD-1 ligand 1 (PD-L1; known as B7-H1 and
CD274), is overexpressed in various solid tumors, including
malignant melanoma, ovarian cancer, lung cancer, and GBM
(41). PD-L1 signaling inhibits T-cell proliferation and IFNg secre-
tion (42). One of the fully humanized antibodies to CTLA-4,
ipilimumab, was clinically tested (43). John and colleagues
demonstrated for the first time that the administration of an
antibody to PD-1 can significantly enhance the therapeutic effi-
cacy of CAR T cells (44). Combination of NZ-1-CAR T cells and

ipilimumab (anti–CTLA-4) or nivolumab (anti–PD-1) would be
another potential strategy. Such strategies may lead to an increase
in effector T-cell proliferation in vivo, so that there are enough cells
to penetrate the BBB.

One of the concerns with PDPN-targeted CAR therapy is that
PDPN is expressed in normal tissues, including the lymphatic
endothelium, lung type I alveolar cells, kidney glomerular podo-
cytes, and mesothelium (21, 23). In the central nervous system,
PDPN is expressed in the choroid plexus, ependyma, meninges
(21), and Purkinje cells (45). We established a cancer-specific
mAb (CasMab) to human PDPN (46). The newly established
mAb clone LpMab-2 recognizes the cancer-type PDPN, which is
aberrantly glycosylated, and was purified from a human PDPN-
transfected GBM cell line. LpMab-2 can react with PDPN-expres-
sing cancer cells, but not with normal cells such as lymphatic cells
and type I alveolar cells. It may be useful to produce a new CAR
using LpMab-2 for CAR therapy targeting PDPN.

Although there may be a number of issues to be addressed
for clinical application, such as off-targets, slow responses, and
short effectiveness, overall we successfully established CAR T cells
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against a promising tumor antigen, PDPN, and provide new
insights toward therapies targeting solid tumors that have failed
other treatments.
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