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A B S T R A C T

Colorectal carcinoma brain metastases (n = 60) were studied using next-generation sequencing and immuno
histochemistry. RAS and BRAF mutations were detected in 58.2% and 7.3% of cases, respectively. Patients with 
RAS- and BRAF-mutant tumors could potentially benefit from the treatment with inhibitors. TP53 mutations 
were detected in 69.1% of metastases. Moreover, altered p53 expression was seen in 91.2% of cases. APC mu
tations were present in 41.8% of tumors. Diffuse nuclear accumulation of β-catenin was seen in 10.2% of me
tastases, although only 1 CTNNB1 mutant was identified. Nevertheless, targeting p53 and Wnt/β-catenin 
pathways may have potential therapeutic implications. Casein kinase 1α1 expression indicating susceptibility to 
protein kinase inhibitors, was seen in 95% metastases including 10 with strong immunoreactivity. The immune 
checkpoint marker CD276, a promising target for immunotherapy, was present on tumor cells in 50.8% of 
metastases and on stromal cells in almost all cases. PRAME, another immunotherapy target, was expressed in 
21.7% of tumors. HER2 membrane immunostaining detected in 13.3% of cases implicated potential treatment 
with HER2 inhibitors. Expression of SLFN11, a predictor of response to DNA-damaging chemotherapies, and a 
biomarker of sensitivity to PARP inhibitors was seen in 8.3% of tumors. In 6.7% of metastases loss or partial loss 
of MTAP expression suggested sensitivity to PRMT5 inhibitors. CD44v5 expressed in 35% of cases indicated 
potential therapeutic utility of anti-CD44v5 monoclonal antibody treatment. Identification of predictive bio
markers through genomic profiling and proteomic analyses is a crucial step toward individually tailored ther
apeutic regimens for patients with colorectal carcinoma brain metastases.

1. Introduction

Colorectal carcinoma (CRC) is one of the leading causes of cancer- 

associated death worldwide [1]. CRC can metastasize to any organ 
including the brain, although the overall average incidence of CRC brain 
metastases (BMs) is low ranging from 0.6 to 3.2% [2]. Patients with CRC 
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BMs have poor outcomes with significant morbidity and mortality 
regardless of treatment that includes surgical resection, postoperative 
radiation, and chemotherapy [3]. The latter is often hampered by che
moresistance and a lack of drug delivery across the blood-brain barrier 
(BBB) [4,5]. Yet several highly promising delivery technologies to 
circumvent the BBB have been developed recently [5].

Progress in cancer genetics and immunology has laid foundation for 
the development of immuno- and targeted therapies. Combining 
molecularly targeted therapies with immune checkpoint inhibitors, 
conventional chemotherapy, or radiotherapy can synergistically inhibit 
multiple signaling pathways and reinforce anti-tumor effects of the 
treatment [6]. The identification of predictive biomarkers through 
genomic profiling and proteomic analyses is essential for optimal patient 
selection and rational design and optimization of combination regimens 
[7].

The aim of this study was to characterize a cohort of 60 CRC BMs 
using targeted next-generation sequencing (NGS) and immunohisto
chemistry (IHC) and identify predictive biomarkers for chemo-, molec
ularly targeted- and immuno-therapy.

2. Material and methods

Formalin-fixed paraffin embedded (FFPE) samples of 60 de- 
identified CRC BMs were assembled in tissue microarrays (TMAs) as 
previously reported [8]. The histologic classification was done accord
ing to the “WHO Classification of Tumors of the Digestive System, 5th 
ed” [9].

2.1. Immunohistochemistry

Immunohistochemistry was performed using Ventana BenchMark 
Ultra (Ventana Medical Systems, Tucson, AZ) or Leica Bond-Max auto
mated immunostainer (Leica Biosystems, Bannockburn, IL) and anti
bodies to the following antigens: Cytokeratin 20 (CK20), Caudal Type 
Homeobox 2 (CDX2), DNA-mismatch repair (MMR) proteins [MutL 
Homolog 1 (MLH1), PMS1 Homolog 2 (PMS2), MutS Homolog 2 (MSH2) 
and MutS Homolog 6 (MSH6)], β-catenin (CTNNB1), Tumor Protein P53 
(p53), Erb-B2 Receptor Tyrosine Kinase 2 (HER2), Methylthioadenosine 
Phosphorylase (MTAP), Schlafen Family Member 11 (SLFN11), Casein 
kinase 1 alpha 1 (CK1 α 1), Cluster of differentiation (CD) 44 variant 5 
(CD44v5), Programmed cell death protein 1 (PD-1/CD279), Pro
grammed death-ligand 1 (PD-L1/CD274), B7 homolog 3 protein 
(B7–H3/CD276) and PReferentially expressed Antigen in MElanoma 
(PRAME). The percentage of positive cells was estimated for each case. 
Diffuse (d), patchy (p) and focal (f) immunostaining were defined, 
respectively, as ≥80, <80% ≥ 10 and <10 of positive tumor cells. 
Scattered positive cells were excluded from the focal category. Also, the 
intensity of immunostaining was estimated as strong (3), intermediate 
(2), and weak (1) in some cases. Predictive biomarkers such as HER2, 
MTAP, SLFN11, CK1 α 1, CD44v5, CD279, CD274, CD276, and PRAME 
were selected based on the literature review and availability of anti
bodies. Antibodies and immunohistochemical protocols are provided in 
Supplemental Table 1.

2.2. Targeted DNA next generation sequencing

Tumor DNA was extracted from FFPE samples using Maxwell® RSC 
DNA FFPE kit and a Maxwell® RSC instrument (Promega, Madison, WI). 
The Ion Torrent™ (Life Technologies/Thermo Fisher Scientific, Wal
tham, MA) next-generation sequencing platform and Ion AmpliSeq™ 
Cancer Hotspot Panel v2 Kit (targeting 50 commonly mutated onco
genes and tumor suppressor genes) were used for genotyping as previ
ously described [8].

3. Results

3.1. Demographic and clinicopathologic data

Demographic and clinicopathologic data are summarized in Table 1
and Supplemental Fig. 1. CRC BMs (n = 60) diagnosed in Caucasians of 
Europe were studied. The cohort included 25 females and 35 males with 
median age 67 and 65 years, respectively. The location of metastatic 
brain tumors was known in 45 cases. Thirteen BMs involved cerebellum, 
11 frontal-, 6 temporal-, 5 parietal-, and 4 occipital-lobe. Three metas
tases involved frontoparietal, parietotemporal, or occipitotemporal re
gions. One tumor penetrated the frontoparietotemporal area. In 2 cases, 
dural metastases occurred. Primary tumor location was known in 37 
cases. Six CRCs were from the right colon including 2 from cecum, and 1 
of each from ascending colon, hepatic flexure, and transvers colon. The 
exact location of 1 right colon tumor was unknown. Thirty-one primary 
tumors were diagnosed in the left colon including 1 in descending, 6 in 
sigmoid, 1 in rectosigmoid junction and 18 in rectum. In 5 cases the 
exact location in the left colon was unknown. Most of CRC BMs were 
moderately (n = 26) or poorly (n = 32) differentiated adenocarcinomas. 
A well differentiated morphology was seen in 1 case. Two moderately 
differentiated CRCs focally displayed either mucinous or signet ring cell 
differentiation. One mucinous adenocarcinoma was diagnosed.

3.2. Immunohistochemistry

The results of IHC studies are summarized in Table 2. All but 1 BMs 
were CDX2-positive with a diffuse expression pattern seen in 54 cases. 
CK 20 was present in 53 tumors, although focal expression or scattered 
positive cells were noticed in 10 and 6 cases, respectively. Microsatellite 
instability was rare with loss of MLH1/PMS2 expression in 5% (3/60) of 

Table 1 
Demographic and clinicopathologic data of 60 CRC BMs.

Clinical and pathological characteristics n

Sex (median age)
Female (67 y) 25 (41.7%)
Male (65 y) 35 (58.3%)
Primary tumor location
Colon left side NOS 5 (8.3%)
Cecum 2 (3.3%)
Ascending 1 (1.7%)
Hepatic flexure 1 (1.7%)
Transvers 1 (1.7%)
Colon right side NOS 1 (1.7%)
Descending 1 (1.7%)
Sigmoid 6 (10%)
Rectosigmoid junction 1 (1.7%)
Rectum 20 (33.3%)
Unknown 21 (35%)
Site of brain metastasis
Frontal lobe 11 (18.3%)
Occipital lob 4 (6.7%)
Parietal lobe 5 (8.3%)
Temporal lobe 6 (10%)
Frontoparietal region 1 (1.7%)
Occipitotemporal region 1 (1.7%)
Parietotemporal region 1 (1.7%)
Frontoparietotemporal region 1 (1.7%)
Cerebellum 12 (20%)

Cerebellar vermis 1 (1.7%)
Dura mater 2 (3.3%)
Unknown 15 (25%)
Histology
Well-differentiated 1 (1.7%)
Moderately differentiated 24 (40%)

With mucinous component 1 (1.7%)
With signet ring cell component 1 (1.7%)

Mucinous 1 (1.7%)
Poorly differentiated 32 (53.3%)

Abbreviations: n-number of cases, y-years.

J. Lasota et al.                                                                                                                                                                                                                                   



Human Pathology 155 (2025) 105717

3

Table 2 
Summary of the results of immunohistochemical studies.

Antigens n Diffuse 3/2/1 Patchy 3/2/1 Focal 3/2/1 Scattered cells Total

CDX2 60 54 (90%) 3 (5%) 2 (3.3%) – 59 (8.3%)
CK20 60 26 (43.3%) 10 (16.7%) 10 (16.7%) 6 (10%) 52 (96.7%)
MLH1/PMS2 (loss) 60 3 (5%) – – – 3 (5%)
MSH2 (loss) 60 – – – – 0
MSH6 (loss) 54 – – – – 0
β-catenin (loss of membrane staining) 59 4 (6.8%) 5 (8.5%) – – 9 (15.3%)
β-catenin (nuclear) 59 6 (10.2%) – 14 (23.7%) 14 (23.7%) 34 (57.6%)
p53 57 42 (73.7%) – – – 42 (73.7%)
p53 (loss) 57 10 (17.5%) – – – 10 (17.5%)
CK1 α 1 60 10/25/22 (95%) – – – 57 (95%)
CD44v5 60 3/0/0 (5%) 1/6/0 (11.7%) 1/0/10 (18.3%) – 21 (35%)
HER2 (membrane) 60 2/1/0 (5%) 0/0/5 (8.3%) – – 8 (13.3%)
HER2 (nuclear) 60 1 (1.7%) – 1 (1.7%) – 2 (3.4%)
SLFN11 60 3 (5%) 2 (3.3%) – – 5 (5.3%)
MTAP (loss) 60 2 (3.3%) 2 (3.3%) – – 4 (6.7%)
PRAME 60 5/3/0 (13.3%) 5/0/0 (8.3%) – 1(1.7%) 14 (23.3%)
CD279 (PD-1) 59 – – – 24a –
CD274 (PD-L1) 59 – – – 12a –
CD276 (tumor) 59 1/4/17 (37.3%) – 0/3/1 (6.8%) – 26 (44.1%)
CD276 (stroma) 55 20/13/17 (83.3%) – – 1a 50 (83.3%)

Abbreviations: n-number of cases, 3-strong-, 2-moderate-, 1-weak- staining, a -scattered immunocompetent cells.

Fig. 1. Immunohistochemistry of predictive biomarkers for cancer therapy. Diffuse and strong expression of: CK1 α 1 (A) in Case 50, CD44v5 (B) in Case 45, HER2 
(C) in Case 15, SLFN11 (D), PRAME (E) and CD276 (F) in Case 5.
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tumors. Expression of β-catenin was evaluated in 59 BMs. Most of the 
tumors (n = 49) revealed prominent membrane positivity although in 5 
and 4 cases, respectively, patchy immunoreactivity or lack of staining 
was noticed. Nuclear accumulation occurred in 34 BMs. However, 
diffuse immunoreactivity was seen only in 6 cases. In the remaining 28 
tumors β-catenin nuclear accumulation occurred either focally (n = 14) 
or in scattered cells. p53 pathologic expression pattern was observed in 
91.2% (52/57) of analyzed metastases. Forty-two tumors showed diffuse 
and strong p53 nuclear staining, while 10 cases were negative. CK1 α 1 
expression either strong (Fig. 1A) or moderate was seen, respectively, in 
16.7% (10/60) and 41.7% (25/60) of BMs. The remaining 25 cases 
revealed weak CK1 α 1 IHC (n = 22) or no staining (n = 3). CD44v5 was 
expressed in 35% (21/60) CRC BMs (Fig. 1B). In 3 cases expression 
pattern was diffuse, while 14 tumors showed either patchy (n = 6) or 
focal positivity. HER2 IHC was positive in 10 tumors (Fig. 1C). However, 
2 tumors revealed only nuclear staining. BMs with membrane immu
noreactivity (n = 8) displayed either diffuse, strong (n = 2) or inter
mediate (n = 1) or patchy, weak positivity. SLFN11 expression was seen 
in 5 tumors of which 3 revealed strong and diffuse immunoreactivity 
(Fig. 1D). Loss of cytoplasmic MTAP staining was noted in 4 cases, 
although focal in 2 tumors. Diffuse PRAME immunoreactivity was seen 
in 8 cases while 5 tumors revealed patchy staining (Fig. 1E). None of 59 
BMs expressed PD-1 or PD-L1 and only scattered positive tumor infil
trating immunocompetent cells were seen in 24 (40.7%) and 12 (20.3%) 
cases, respectively. However, 50.8% (30/59) of BMs revealed CD276 
positivity, with focal expression pattern in 8 cases. Moreover, CD276 
was prominently expressed in tumor stromal cells in 92.7% (51/55) of 
cases (Fig. 1F). Some tumors expressed multiple predictive biomarkers. 
This is further highlighted in Supplemental Fig. 1.

3.3. Targeted DNA NGS

DNA of sufficient quality was extracted from 55 metastatic tumors 
and examined by NGS. RAS was the most frequently mutated oncogene 
(58.2%, 32/55). There were 29 KRAS and 3 NRAS mutually exclusive 
mutations identified. Most of KRAS mutations were in codon 12 and 13 
(n = 23) with p.G12V substitution being the most common (n = 10). 
PIK3CA mutations (n = 10) with 3 exceptions coexisted with KRAS al
terations. Most of these mutations (n = 8) clustered in exon 9 hotspots p. 
E542, p.E545 and p.Q546. BRAF mutations including 3 p.V600E were 
identified in 4 (7.3%) tumors. The remaining 16 metastases except for 1 
tumor with ERBB2 and 1 with CTNNB1 mutation revealed no alteration 
in analyzed oncogenes, although harbored tumor suppressor gene mu
tations. TP53 tumor suppressor gene was mutated in 69.1% (38/55), 
while APC, a core component of the canonical Wnt/β-catenin pathway, 
was altered in 41.8% (23/55) of BMs. Mutations in other tumor sup
pressor genes including ATM (n = 4), FBXW7 (n = 4), PTEN (n = 5), 
PTPN11(n = 1) and SMAD4 (n = 1) were identified in 13 metastases and 
except 2 cases were mutually exclusive. However, these alterations 
frequently coexisted with KRAS, TP53, and APC mutations. Tumor 
mutation profiles are illustrated in Supplemental Fig. 1. Detailed NGS 
results are listed case-by-case in Supplemental Table 2.

4. Discussion

Almost 60% of CRC BMs harbored RAS mutations. A similar fre
quency was previously reported [10]. Tumors driven by RAS tend to 
develop BMs more often than other primary colorectal adenocarcinomas 
[11]. For decades, RAS mutants were undruggable targets. However, 
discovery of covalent inhibitors targeting KRAS p.G12C offered possi
bility of targeted therapy [12,13]. Although, inhibitor monotherapies 
have not shown meaningful clinical impact in CRC patients, a combi
nation of KRAS p.G12C inhibitors with other therapies such as 
anti-epidermal growth factor receptor drugs or checkpoint inhibitors 
demonstrated promising efficacy in preclinical and clinical studies [14,
15]. However, a low frequency of p.G12C mutation reported in current 

and other studies is a significant factor limiting success of KRAS p.G12C 
inhibitor targeted therapy [10]. Recently developed non-covalent 
pan-KRAS inhibitor which suppresses a broad range of KRAS mutants 
including all reported in this study, might be a breakthrough in the 
treatment of metastatic CRC driven by KRAS mutations [16]. A dual 
inhibition of MEK pathway and CDK4/6 demonstrated therapeutic ef
ficacy in K-, and NRAS mutant patient-derived xenografts and a 
co-clinical trial [17].

Activation of the PI3K/AKT/mTOR pathway promotes CRC cell 
proliferation and survival [18]. Mutations in PIK3CA and PTEN, key 
components of the PI3K/AKT/mTOR pathway were identified in 18% 
and 9% of CRC BMs. Although several PI3K inhibitors have been 
developed and evaluated by preclinical studies and in clinical trials 
throughout the last decade, the efficacy of these therapeutics was 
limited due to the complex nature of the PI3K/AKT/mTOR pathway, 
which crosstalk with other pathways including RAS/RAF/MAPK and 
Wnt/β-catenin pathway [19].

Most CRCs driven by BRAF p.V600E belong to the consensus mo
lecular subtype 1 characterized by distinctive features such as hyper
mutations, microsatellite instability, and immune activation [20]. 
Previous study reported BRAF p.V600E in 9% of CRC BMs [10]. In this 
investigation, 3 BRAF p.V600E mutants (5.5%) including 1 with multi
ple APC, PTEN and TP53 mutations and deficient DNA mismatch repair 
(dMMR) were identified. BRAF p.V600E CRCs poorly respond to stan
dard therapies [21]. However, recent trials showed that the combined 
BRAF and MEK inhibition and PD-1 immunotherapy augmented tumor 
response to the treatment [22].

TP53 mutations were detected in 69% of CRC BMs. Moreover, IHC 
revealed altered p53 expression in 91% of cases. Although TP53 mutants 
have been considered “undruggable,” several therapeutic strategies 
have been developed including degradation of mutant p53 and resto
ration of wild-type activity [23]. More recent preclinical experiments on 
TP53 mutant colorectal and pancreatic cancer models revealed that 
TP53 mutation status is a predictive biomarker for the treatment with 
combinations of trifluorothymidine and poly(ADP-ribose) polymerase 
inhibitors (PARPi) agents [24].

SLFN11 is a member of the SLFN family of genes implicated in 
important biological functions in mammals such as the control of cell 
proliferation and induction of immune responses [25]. Recently, 
SLFN11 expression status has emerged as a biomarker for the prediction 
of the response to conventional chemotherapy. Both in vitro studies 
using cell lines and patient-derived xenograft models, and clinical trials 
documented positive correlation between expression of SLFN11 and 
tumor cell sensitivity to DNA-damaging (DDAs) and PARPi agents [26,
27]. In this study, 5 tumors including 2 with patchy positivity expressed 
SLFN11.

Reported frequency of HER2 positive brain metastases has varied 
from 12 to 21% [28–30]. In this study 13% of metastases revealed 
positive membrane staining, although most cases (5 of 8) were 
HER2-low tumors. The detection of HER2 low expression level is 
becoming increasingly important because of novel targeted agents, 
antibody drug conjugates, using HER2 as a docking site. A full 
blood-brain barrier-penetrant, highly selective HER2 inhibitor, 
DZD1516 was proven in pre-clinical and clinical studies to be effective in 
treatment of intracranial breast cancer metastases [31].

Dysregulation of the Wnt/β-catenin signaling pathway was impli
cated in tumorigenesis and progression of CRCs [32]. More than half of 
CRC BMs harbored either APC mutations or revealed nuclear accumu
lation of β-catenin, findings suggesting pathological signaling. Thus, 
targeting Wnt/β-catenin pathway with inhibitors, antagonists and ago
nists may have therapeutic value, although preclinical and clinical 
studies are still at an early stage [33,34].

Casein kinase 1 alpha 1 (CK1 α 1) encoded by CSNK1A1 belongs to 
the CK1 protein family. This multifunctional protein has serine/threo
nine protein kinase activity and is one of the main components of the 
Wnt/β-catenin signaling pathway. CK1 α was implicated in the 
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development and progression of human cancer including CRC [35]. 
Over the past several years, a significant effort has been made to utilize 
protein kinase inhibitors in cancer treatment [36]. Epiblastin A, an 
adenosine triphosphate (ATP)-mediated competitive inhibitor of CK1 α 
has been shown to inhibit cell-line-derived and patient-derived tumor 
xenograft CRC mice models [35]. The RNA interference and genome 
editing and immunotherapies targeting CK1 through the Wnt signaling 
pathway are among other potential therapeutic strategies [37]. The 
current study documented CK1 α 1 expression in 95% of CRC BMs with 
>50% showing intermediate to strong (17%) immunoreactivity. Thus, 
CK1 appears to be a potential therapeutic target in CRC BMs.

ATM loss of function mutations was reported in approximately 7% of 
colorectal carcinomas by The Cancer Genome Atlas Network (htt 
ps://www.genome.gov). Although preclinical studies have shown that 
loss of ATM expression due to biallelic mutations sensitize human tu
mors to DNA-damaging chemotherapies, radiation, and DNA damage 
response inhibitors including ataxia telangiectasia and Rad3-related 
protein inhibitors, clinical trials have yielded mixed results [38]. In 
this cohort of CRC BMs, only 4 tumors (7%) harbored non-biallelic ATM 
mutations. Thus, clinical exploitation of this genetic deficiency remains 
elusive.

Deletion of the chromosome 9p21 (Chr9p21) locus involving 
CDKN2A, which encodes p19-ARF and p16-INK4a tumor suppressors, 
occurs in approximately 15% of human cancers. Chr9p21 deletion 
frequently extends proximal to CDKN2A causing co-deletion of the 5′- 
methylthioadenosine phosphorylase (MTAP) gene [39]. MTAP encodes 
an enzyme required for the metabolism of polyamines and purines, 
which plays a key role in the purine/methionine salvage pathway [40]. 
In cancer cells, MTAP deficiency is impaired by depletion of the protein 
arginine methyltransferase 5 (PRMT5) because of the accumulation of 
methylthioadenosine (MTA). Physiologically, MTAP cleaves MTA to 
generate precursor substrates for methionine and adenine salvage 
pathways [40]. Several therapeutic strategies for the treatment of 
MTAP-deficient tumors have been developed. More recently, 
MRTX1719 (Mirati Therapeutics, San Diego, CA), the MTA-cooperative 
PRMT5 inhibitor that selectively binds the PRMT5-MTA complex has 
been shown to inhibit tumor growth in cancer cell lines and tumor 
xenograft models. Moreover, MRTX1719 is undergoing clinical trial 
(NCT0524550) in patients with unresectable or metastatic solid tumors 
harboring MTAP deletion [41,42]. In this study, MTAP expression was 
fully or partially lost in a small fraction (4/60, 7%) of CRC BMs. 
Nevertheless, an inhibition of the PRMT5-MTA complex could be a 
therapeutic option in such cases.

Immunotherapy is considered a promising treatment strategy for 
solid tumors including CRC [43]. Clinical CRC trials confirmed durable 
antitumor benefit of pembrolizumab in dMMR metastatic CRCs 
including a patient with brain metastasis [44,45]. In the current cohort, 
the incidence of proficient DNA mismatch repair (pMMR) and dMMR 
tumors corresponded to the previously published frequency in meta
static CRCs [46]. As reported in pMMR CRCs, frequency of 
tumor-infiltrating immune cells expressing PD-1 or PD-L1 was low 
suggesting limited benefit from the treatment targeting PD-1/PD-L1 axis 
[47].

Prominent expression of the CD276, also known as B7 homolog 3 
(B7–H3) immunoregulatory protein, has been reported in many human 
malignancies. Because of restricted expression in normal tissues, the 
B7–H3 immune checkpoint molecule has become a target for thera
peutic interventions and several promising strategies have been devel
oped including a new class of antineoplastic agents such as monoclonal 
antibodies, radioimmunotherapy or antibody-drug conjugates [48,49]. 
Membrane/cytoplasmic CD276 immunoreactivity was frequently seen 
in CRC BM tumor and stromal cells. However, previously documented 
nuclear positivity was not noticed [50]. The latter was not reported by a 
recent study of 805 primary CRCs [51].

PRAME is a nuclear receptor and transcriptional regulator recog
nized by tumor-reactive cytotoxic T cells. PRAME expression highlights 

anti-PRAME immunotherapy targets [52]. Recent study reported 
PRAME positivity only in 1% of primary CRCs [53]. However, in CRC 
BMs, PRAME was expressed in almost 22% of cases. Thus, PRAME 
should be considered a potential therapeutic target.

An antibody-drug conjugate (H1D8-DC) targeted therapy is effective 
against CD44v5-positive intrahepatic cholangiocarcinoma cells and 
patient-derived xenograft models (ICC) [54]. Due to high expression of 
cathepsin B in ICC cells, the H1D8-drug conjugate is preferentially 
released in cancer cells but not in normal cells, thus inducing potent 
cytotoxicity at picomolar concentrations [54]. About one third of CRC 
BMs expressed CD44v5. Also, cathepsin is overexpressed in CRC [55]. 
Thus, CD44v5 could be a bona fide therapeutic target in CRC BMs.

In summary, this study showed that a considerable number of pa
tients with CRC BMs could potentially benefit from individually tailored 
chemo-, molecularly targeted-, and immuno-therapy.
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sources, Formal analysis. Anna Scherping: Resources, Investigation. 
Piotr Czapiewski: Resources, Investigation. Ireneusz Dziuba: Re
sources, Investigation. Yukinari Kato: Resources, Methodology, Inves
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