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Immune checkpoint molecules have received attention as targets of cancer immunotherapy. Killer cell lectin-
like receptor subfamily G member 1 (KLRG1) is one of the immune checkpoint molecules expressed in CD4+ T,
CD8+ T, and natural killer (NK) cells. KLRG1 exhibits antiviral and antitumor immunity, and its expression
in T and NK cells is upregulated by viral infectious diseases and some tumors. Thus, monoclonal antibodies
(mAbs) for KLRG1 would be useful tools for the diagnosis and immunotherapy against viral infectious diseases
and cancers. We have developed anti-human KLRG1 (hKLRG1) mAb (clone KLMab-1, mouse IgG1, kappa) by
the Cell-Based Immunization and Screening method. We have also demonstrated that KLMab-1 recognizes
both exogenous and endogenous hKLRG1 in flow cytometry. In this study, we first showed that KLMab-1 and
its recombinant mAb (recKLMab-1) bound to exogenous hKLRG1 overexpressed in Chinese hamster ovary
(CHO)-K1 cells, but not in parental CHO-K1 cells, in immunocytochemistry. We next showed that both mAbs
detected endogenous hKLRG1 expressed in human NK cells. These results demonstrate that KLMab-1 and
recKLMab-1 are available for immunocytochemistry.
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Introduction

T cells and natural killer (NK) cells play crucial
roles in antiviral and antitumor immunity.1–4 During the

response to viral infection or cancer development, T cells are
activated, expanded, and differentiated into effector and
memory T cells. Activated NK cells migrate to the infected or
tumor site, and the NK cells eliminate the target cells through
the production of cytokines and exhibition of cytolytic activ-
ity. In contrast, the activities of T and NK cells are suppressed
by immune checkpoint molecules, including programmed
cell death 1 (PD-1) and cytotoxic T lymphocyte-associated
antigen 4 (CTLA-4).5

Accordingly, immune checkpoint molecules have drawn
attention as targets for cancer immunotherapy. In fact, speci-
fic monoclonal antibodies (mAbs) against PD-1 and CTLA-4
have provided great advances in the medical treatment of
cancers.6 However, developing novel mAbs against other

immune checkpoint molecules has been required because
the number of patients who respond to anti-PD-1 or anti-
CTLA-4 mAbs is limited.7

Killer cell lectin-like receptor subfamily G member 1
(KLRG1), a lectin-like type II transmembrane protein, is an
immune checkpoint molecule expressed in CD4+ T, CD8+ T,
and NK cells.8–10 It harbors an immunoreceptor tyrosine-
based inhibitory motif (ITIM) in its cytoplasmic region.
Upon binding to KLRG1 ligands including E-cadherin,
KLRG1 evokes inhibitory signaling through recruitment
of Src homology 2 domain-containing inositol polyphos-
phate 5-phosphatase 1 (SHIP1) and Src homology region 2
domain-containing phosphatase 2 (SHP2) to ITIM. Then,
KLRG1 attenuates interferon g production in T and NK cells,
and suppresses NK cell-mediated cytotoxicity.8,10–16

The mechanism contributes to the progression of viral
infection and tumor by KLRG1. Moreover, the expression of
KLRG1 is increased in NK cells of virus-infected mice and
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T cells of cervical and colorectal cancer patients.8,17,18 These
reports have suggested that KLRG1 can be a target mole-
cule for the diagnosis and immunotherapy of viral infectious
diseases and some cancers.

We have established mAbs against cell surface-expressing
membrane proteins by the Cell-Based Immunization and
Screening, including CCR3,19–21 CCR8,22–25 CCR9,26,27

CD10,28,29 CD19,30 CD20,31,32 CD44,33 CD133,34 Ep-
CAM,35,36 HER3,37 PD-L1,38 podoplanin,39–53 TIGIT,54 and
TROP2.55,56 We have also established an antihuman KLRG1
(hKLRG1) mAb (clone KLMab-1; mouse IgG1, kappa),
which reacts to endogenous and exogenous hKLRG1 in
flow cytometry.57 In this study, we showed that KLMab-1
and its recombinant mAb (recKLMab-1) are available for
immunocytochemistry against endogenous and exogenous
hKLRG1.

Materials and Methods

Cell lines

Chinese hamster ovary (CHO)-K1 cells were obtained
from the American Type Culture Collection (Manassas, VA).
CHO-K1 cells overexpressed with human KLRG1 (CHO/
hKLRG1) were established previously.57 CHO-K1 and CHO/
hKLRG1 were cultured in Roswell Park Memorial Institute
1640 medium (Nacalai Tesque, Inc., Kyoto, Japan), supple-
mented with 10% heat-inactivated fetal bovine serum
(Thermo Fisher Scientific, Inc., Waltham, MA), 100 U/mL
of penicillin, 100 lg/mL of streptomycin, and 0.25 lg/mL
of amphotericin B (Nacalai Tesque, Inc.). The cells were
maintained in a humidified atmosphere at 37�C and 5%
carbon dioxide. Human NK cells (donor lot. 4022602, purity
>70%) were purchased from Takara Bio (Shiga, Japan).

Antibodies

The development of KLMab-1 was described in our
previous report.57 To generate a recombinant KLMab-1
(recKLMab-1), VH and CH cDNAs of KLMab-1 were sub-
cloned into the pCAG-Neo vector (FUJIFILM Wako Pure
Chemical Corporation, Osaka, Japan), and VL and CL cDNAs
of KLMab-1 were subcloned into the pCAG-Ble vector
(FUJIFILM Wako Pure Chemical Corporation). An anti-
hKLRG1 mAb (clone SA231A2) was purchased from Bio-
Legend (San Diego, CA). Alexa Fluor 488-conjugated
anti-mouse IgG was purchased from Cell Signaling Tech-
nology, Inc. (Danvers, MA).

Immunocytochemistry

For immunocytochemistry of CHO-K1 and CHO/hKLRG1
cells, the cells were attached to an acid-wash coverslip and
were fixed with 4% paraformaldehyde (PFA) in phosphate-
buffered saline (4% PFA/PBS) for 10 minutes. Subsequently,
the cells were incubated with the blocking buffer (PBS
supplemented with 0.2 mM Ca2+, 2 mM Mg2+, and 0.5%
bovine serum albumin) for 30 minutes, primary antibodies
(10 lg/mL in the blocking buffer) for 1 hour, and Alexa Fluor
488-conjugated anti-mouse IgG (1:400 dilution in the
blocking buffer) for 45 minutes.

For immunocytochemistry of NK cells, the suspension of
NK cells was centrifuged at 270 · g for 5 minutes at room
temperature, and the cell pellet was suspended in and fixed

with 4% PFA/PBS for 10 minutes. The cells were further
suspended in the blocking buffer for 30 minutes, primary
antibodies (10 mg/mL in the blocking buffer) for 2 hours, and
Alexa Fluor 488-conjugated anti-mouse IgG (1:400 dilution
in the blocking buffer) for 45 minutes. 4’,6-Diamidino-2-
phenylindole (Thermo Fisher Scientific, Inc.) was used for
nuclear staining of CHO-K1, CHO/hKLRG1, and NK cells.
Fluorescence images were acquired using a 40 · objective
on a digital microscope (BZ-X800; Keyence, Osaka, Japan).

Results

Our flow cytometric analysis revealed that CHO/hKLRG1
cells highly express hKLRG1 on the cell surface.57 In this
study, we applied KLMab-1 and recKLMab-1 in immuno-
cytochemistry using CHO/hKLRG1 cells and found that
KLMab-1 and recKLMab-1, but not buffer control, bound to
CHO/hKLRG1 cells (Fig. 1A). In particular, hKLRG1 was
strongly detected at the plasma membrane. Both mAbs did
not react to CHO-K1 cells (Fig. 1B). A commercially avail-
able anti-hKLRG1 mAb (clone SA231A2) also bound to
CHO/hKLRG1 cells, but not CHO-K1 cells (Fig. 1A, B).
This result shows that KLMab-1 and recKLMab-1 recognize
exogenous hKLRG1 in immunocytochemistry.

We previously showed that KLMab-1 detects endoge-
nously expressing hKLRG1 in human NK cells in flow
cytometry.57 In this study, we incubated NK cells with
KLMab-1 and recKLMab-1 and found that both mAbs, as
well as SA231A2, bound to NK cells (Fig. 1C). This result
demonstrates that KLMab-1 and recKLMab-1 recognize
endogenous hKLRG1 in immunocytochemistry.

Discussion

In this study, we demonstrated that KLMab-1 and
recKLMab-1 were applicable for immunocytochemistry
against endogenous and exogenous hKLRG1. The mAbs
would become useful tools for the detection of hKLRG1-
positive T and NK cells in viral infectious diseases and
cancers.

KLMab-1 and recKLMab-1 provided images with high
signal-to-noise ratios against not only exogenous hKLRG1
overexpressed in CHO-K1 cells but also endogenous hKLRG1
expressed in NK cells. Our previous study showed that
KLMab-1 weakly detected endogenous hKLMab-1 in flow
cytometry.57 We suppose that KLMab-1 and recKLMab-1
are suitable for immunocytochemistry. Moreover, KLMab-1
and recKLMab-1 strongly detected hKLRG1 at the plasma
membrane, which was clearly represented in CHO/hKLRG1
cells. The result indicates that the mAbs would be able
to identify the intracellular distribution of hKLRG1, espe-
cially by colabeling the cells with any organelle markers. The
information about the intracellular distribution of hKLRG1
would provide advantages in uncovering the unknown func-
tions of KLRG1.

To uncover the KLRG1’s roles and to detect KLRG1-
positive cells, other applications of KLMab-1 and
recKLMab-1 are also required. In the future, we would like
to test other applications, including immunohistochemistry,
immunoprecipitation, and Western blotting.

Furthermore, confirming the availability of KLMab-1
and recKLMab-1 in viral infectious diseases and cancers
is one of our goals. Some studies have demonstrated that
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FIG. 1. Immunocytochemistry of hKLRG1 using KLMab-1 and recKLMab-1. (A, B) CHO/hKLRG1 cells (A) or CHO-K1
(B) cells were incubated with buffer control, SA231A2 (10mg/mL), KLMab-1 (10mg/mL), or recKLMab-1 (10mg/mL) for 1
hour. Subsequently, the cells were incubated with Alexa 488-conjugated anti-mouse IgG and DAPI for 45 minutes. (C)
Immunocytochemistry of endogenously expressing hKLRG1. NK cells were incubated with SA231A2 (10mg/mL), KLMab-1
(10mg/mL), or recKLMab-1 (10mg/mL) for 2 hours. Subsequently, NK cells were incubated with Alexa 488-conjugated anti-
mouse IgG and DAPI for 45 minutes. Scale bars, 20mm. CHO, Chinese hamster ovary; DAPI, 4’,6-diamidino-2-phenylindole;
hKLRG1, human KLRG1; KLRG1, Killer cell lectin-like receptor subfamily G member 1; NK, natural killer.
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anti-KLRG1 mAb reduces cytokine productions in KLRG1-
overexpressed NK cells8 and KLRG1+ CD4+ T cells.58 An
anti-KLRG1 mAb reduces the progression of breast cancer
cells.59 In addition, blocking of KLRG1 signaling in CD8+

T cells by anti-E-cadherin antibody reduces the prolifera-
tion of the cells.60 These studies would promote us to
investigate the antitumor and/or antiviral effects of KLMab-1
and recKLMab-1.
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