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Abstract 

A novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused a global pandemic 
of coronavirus disease 19. Coronaviruses, including SARS-CoV-2, use RNA-dependent RNA polymerase (RdRP) for viral 
replication and transcription. Since RdRP is a promising therapeutic target for infection of SARS-CoV-2, it would be 
beneficial to develop new experimental tools for analysis of the RdRP reaction of SARS-CoV-2. Here, we succeeded to 
develop novel mouse monoclonal antibodies (mAbs) that recognize SARS-CoV-2 nsp12, catalytic subunit of the RdRP. 
These anti-nsp12 mAbs, RdMab-2, -13, and -20, specifically recognize SARS-CoV-2 nsp12 by western blotting analy-
sis, while they exhibit less or no cross-reactivity to SARS-CoV nsp12. In addition, SARS-CoV-2 nsp12 was successfully 
immunoprecipitated using RdMab-2 from lysates of cells overexpressing SARS-CoV-2 nsp12. RdMab-2 was able to 
detect SARS-CoV-2 nsp12 transiently expressed in established culture cells such as HEK293T cells by indirect immu-
nofluorescence technique. These novel mAbs against SARS-CoV-2 nsp12 are useful to elucidate the RdRP reaction of 
SARS-CoV-2 and biological cell response against it.
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Introduction
While human coronaviruses (CoV) are widespread in 
humankind as a pathogen for the common cold, severe 
acute respiratory syndrome CoV (SARS-CoV), Middle 
East respiratory syndrome CoV (MERS-CoV), and SARS-
CoV-2 cause severe acute respiratory syndrome and 
have extremely high mortality rates [1–4]. Among them, 
SARS-CoV-2 emerged in Wuhan city, China at the end of 
2019 and spread worldwide, causing a global pandemic of 
coronavirus disease 19 (COVID-19) [2, 3]. Emerging evi-
dences have clarified the virological properties of SARS-
CoV-2 and the biological mechanism by which leads to 
symptoms of COVID-19 [5].

SARS-CoV-2 is a positive-sense single-stranded RNA 
virus that has a large RNA genome (~ 30 kb) and shares 
high sequence homology to SARS-CoV (~ 80%) and 
MERS-CoV (~ 50%) [6]. A series of non-structural pro-
teins (nsps), which is produced by cleaving two polypro-
teins, polyprotein1a (pp1a) and polyprotein1ab (pp1ab) 
translated from the genomic RNA, assemble into viral 
replication and transcription complexes [7]. Among 
these nsps, nsp12, which is the catalytic subunit of the 
RdRP complex containing nsp7 and nsp8 as cofactors, 
catalyzes the synthesis of viral RNA and thus plays a piv-
otal role in the viral replication and transcription [8–11], 
although the detailed transcription mechanism of CoVs 
remains unclear. Therefore, nsp12 is considered a prom-
ising therapeutic target for antiviral inhibitors such as 
remdesivir, which is practically utilized to treat COVID-
19 [12–14]. Recent structural analysis of SARS-CoV-2 
nsp12 by electron cryo-microscopy has revealed its right-
hand shaped structure like RdRPs of other RNA viruses 
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[8–11]. Intriguingly, the structures of nsp12 encoded 
by SARS-CoV-2 has a characteristic β-hairpin motif in 
the nidovirus RdRP-associated nucleotidyltransferase 
(NiRAN) domain, which is structurally different from 
that of SARS-CoV [9]. However, difference between the 
RdRP reactions of SARS-CoV and SARS-CoV-2 remains 
unclarified.

Although a few antibodies (Abs) against nsp12 of 
SARS-CoV-2 are commercially available, these Abs are 
all polyclonal and not highly specific. In addition, these 
polyclonal Abs cannot discriminate between nsp12 of 
SARS-CoV and SARS-CoV-2. To study the molecular 
mechanism underlying the RdRP reaction of SARS-
CoV-2, monoclonal antibody (mAb) against nsp12 of 
SARS-CoV-2, which has not been developed so far, could 
be powerful tools. Furthermore, the mAb that could 
specifically detect SARS-CoV-2 nsp12, but not that of 
SARS-CoV, would be highly potential to examine dif-
ference between the RdRP reactions of SARS-CoV and 
SARS-CoV-2. In this study, we have established novel 
mouse mAbs against SARS-CoV-2 nsp12 (RdMabs), 
and evaluated whether they could be applied for west-
ern blotting, immunoprecipitation, and immunostaining 
analyses. In addition, we examined the specificity of these 
mAbs, especially focusing on whether they discriminate 
between nsp12 of SARS-CoV and SARS-CoV-2.

Materials and methods
Cells and antibodies
P3X63Ag8U.1 (P3U1) and SV40-transformed human 
embryonic kidney cell line HEK-293T (293T) cells were 
obtained from the American Type Culture Collection 
(Manassas, VA). P3U1  cells  were cultured in a Roswell 
Park Memorial Institute (RPMI) 1640 medium (Nacalai 
Tesque, Inc., Kyoto, Japan) that was supplemented with 
10% heat-inactivated fetal bovine serum (FBS; Thermo 
Fisher Scientific Inc., Waltham, MA), 100 U/mL penicil-
lin, 100  μg/mL streptomycin, and 0.25  μg/mL ampho-
tericin B (Nacalai Tesque, Inc.). 293T cells were cultured 
in Dulbecco’s modified Eagle’s medium supplemented 
with 10% FBS, streptomycin (100  μg/ml), and penicillin 
(100 U/ml).

Anti-β-actin (AC-15) mouse mAb (Merck, Darmstadt, 
Germany) and anti-FLAG mouse mAb (M2) (Merck) 
were used for western blotting analysis. mAbs against 
nsp12 of SARS-CoV-2 (RdMab-2, -13, and -20) were 
developed in this study (see below).

Hybridoma production of mAbs against nsp12 
of SARS‑CoV‑2
Three female BALB/c mice (6-weeks-old) were pur-
chased from CLEA Japan (Tokyo, Japan). The animals 
were housed under specific pathogen-free conditions. 

The Animal Care and Use Committee of Tohoku Uni-
versity approved all animal experiments (Permit num-
ber: 2019NiA-001). We designed three peptides (#1–3) 
of nsp12 as immunogens to immunize mice around the 
NiRAN domain (Fig.  1A, B). To develop mAbs against 
nsp12 of SARS-CoV-2, three synthesized peptides, 
such as 34AFDIYNDKVAGFAKFLKTNC53, 74RHTFS-
NYQHEETIYNLLKDC83, and 248TRALTAESHVDT-
DLTKPYIC266, which were keyhole limpet hemocyanin 
(KLH)-conjugated (Eurofins Genomics, Tokyo, Japan) 
were immunized intraperitoneally (i.p.) with Imject Alum 
(Thermo Fisher Scientific Inc.) into BALB/c mice (100 μg 
of each peptide/one mouse). The procedure included 
three additional immunization procedures (100  μg of 
each peptide), followed by a final booster intraperito-
neal injection (100 μg of each peptide) 2 days before its 
spleen cells were harvested. The harvested spleen cells 
were subsequently fused with P3U1 cells, using polyeth-
ylene glycol 1500 (PEG1500; Roche Diagnostics, Indian-
apolis, IN). Then, hybridomas were grown in an RPMI 
medium supplemented with hypoxanthine, aminopterin, 
and thymidine for selection (Thermo Fisher Scientific 
Inc.). Cultured supernatants were finally screened using 
enzyme-linked immunosorbent assay (ELISA) for the 
detection of nsp12 peptides [15]. Of 24 clones (RdMab-1 
to -24), three clones (RdMab-2, 13, 20) were cultured 
using Hybridoma-SFM medium (Thermo Fisher Scien-
tific Inc.), and were purified with Ab-Capcher (ProteN-
ova, Kagawa, Japan).

Plasmids
The plasmid vectors, pCMV-FLAG-CoV-nsp12 and 
-CoV-2-nsp12, containing a FLAG-tagged nsp12 expres-
sion cassette driven by a CMV promoter, was designed 
and constructed by VectorBuilder Inc. (Chicago, IL). 
The SARS-CoV and -CoV-2 nsp12 genes (GenBank: 
NC_004718 and MN908947, respectively) cloned into the 
plasmid vectors were codon optimized for expression in 
human cells.

Transfection of plasmids
To overexpress SARS-CoV and -CoV-2 nsp12 transiently, 
293T cells were transfected with plasmid vectors carrying 
a FLAG-tagged nsp12 expression cassette, pCMV-FLAG-
CoV-nsp12 and -CoV-2-nsp12 using Lipofectamine 2000 
(Thermo Fisher Scientific). After 72 h of incubation, cells 
were lysed in RIPA buffer (Nacalai Tesque) for western 
blotting analysis.

Western blotting analysis
Western blotting assay was performed as previously 
described [16]. Briefly, whole-cell extracts were pre-
pared and 30  μg of total protein per lane was loaded 



Page 3 of 7Machitani et al. Virology Journal          (2022) 19:213  

onto 4–20% gradient sodium dodecyl sulfate (SDS)-
polyacrylamide gels. After electrophoresis under reduc-
ing conditions, bands of protein were transferred to 

nitrocellulose membranes (Amersham; Cytiva, Marlbor-
ough, MA). After blocking with 5% skim milk prepared in 
TBS-T (Tween-20, 0.1%), the membrane was incubated 

Fig. 1 Development of mouse monoclonal antibodies against SARS-CoV-2 nsp12. A, B Structure of SARS-CoV-2 nsp12. The RdRP nsp12 comprises 
the NiRAN, interface, and the RdRP domains, which has the right-handed structure composed of fingers, palm, and thumb domains. The ribbon 
diagrams were cited from Protein Data Bank (PDB) (accession numbers 7BTF). NiRAN, the nidovirus RdRP-associated nucleotidyltransferase domain. 
The peptides (#1–3) used to immunize mice are shown. C Western blotting analysis using mouse monoclonal antibodies (mAb) against SARS-CoV-2 
nsp12 (RdMab-2, -13, and -20). A FLAG-tagged nsp12 of SARS-CoV-2 transiently expressed in 293T cells was detected using an anti-FLAG antibody 
and RdMabs
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with 5 μg/mL of RdMab-2, -13, and -20, 1:5000 dilution 
of anti-FLAG (clone M2; Merck), or 1:10,000 dilution of 
anti-β-actin (clone AC-15; Merck), followed by incuba-
tion in the presence of horseradish peroxidase (HRP)-
labeled anti-mouse IgG antibody (1:5000; Cell Signaling 
Technology, Danvers, MA).

Immunoprecipitation assay
Immunoprecipitation assays were performed as previ-
ously described [15]. Briefly, 293T cells were transfected 
with a FLAG-tagged nsp12-expressing plasmid (pCMV-
FLAG-CoV-2-nsp12). After 72  h of incubation, 1 ×  107 
cells were lysed in 1  ml of Lysis buffer A (0.5% NP-40, 
20  mM Tris–HCl (pH 7.4), and 150  mM NaCl). After 
sonication, lysates were cleared of insoluble material by 
centrifugation at 21,000×g at 4  °C for 15  min. FLAG-
nsp12 proteins were co-immunoprecipitated using Pierce 
Protein A Plus Agarose (Thermo Fisher Scientific) and 
20  µg of anti-nsp12 mAb (RdMab-2) from the lysate, 
and then precipitated immune complexes were eluted 
in 2 × SDS loading buffer (2% β-mercaptoethanol, 20% 
glycerol, 4% SDS, and 100 mM Tris–HCl (pH 6.8)). The 
eluted proteins were detected by western blotting anal-
ysis. To detect the precipitated FLAG-nsp12 proteins, 
anti-FLAG mouse mAb (1:5000; M2) and Mouse True-
Blot ULTRA Anti-Mouse Ig HRP (1:4000; Rockland, Gil-
bertsville, PA) were used for western blotting analysis.

Immunofluorescence cell staining
Immunofluorescence cell staining was performed as 
previously described [16]. Briefly, cells were fixed with 
4% formaldehyde in PBS, permeabilized with 0.2% Tri-
tonX-100 in PBS, and blocked with 2% bovine serum 
albumin in PBS. The cells were incubated with 10  μg/
mL the primary antibody RdMab-2, followed by incu-
bation in the presence of Alexa488-labeled goat anti-
mouse IgG (1:1000; Thermo Fisher Scientific). The cells 
were mounted in ProLong Glass Antifade Mountant with 
NucBlue Stain (Thermo Fisher Scientific) and imaged 
under a fluorescent microscope (IX81, Olympus, Tokyo, 
Japan).

Results
Establishment of anti‑nsp12 mAbs
Structural analyses using electron cryo-microscopy have 
shown that SARS-CoV-2 nsp12 protein has a closed, 
right-handed structure, which consists of palm, finger, 
and thumb domains (Fig.  1A, B) [8, 9]. Comparative 
analysis of structures of nsp12 encoded by SARS-CoV 
and SARS-CoV-2 suggested that SARS-CoV-2 nsp12 has 
a characteristic β-hairpin motif in the NiRAN domain, 
which is structurally different from that of SARS-CoV 
[9]. We hypothesized that antibodies recognizing the 

NiRAN domain in SARS-CoV-2 nsp12 could discrimi-
nate between nsp12 of SARS-CoV and SARS-CoV-2. 
Therefore, we designed and utilized three peptides (#1–
3) of nsp12 around the NiRAN domain, but not recom-
binant nsp12 protein, as immunogens to immunize mice 
(Fig.  1A, B) and subsequently established hybridomas 
producing anti-nsp12 mAbs from the mouse spleen. 
We first screened the culture supernatants by ELISA for 
binding to nsp12 peptides, which selected 24 mAb clones 
(RdMab-1-24) (Table 1). To examine whether these puta-
tive clones binds to the nsp12 protein, we transiently 
expressed FLAG-tagged nsp12 of SARS-CoV-2 in 293T 
cells and then performed western blotting analysis using 
the culture supernatants of hybridomas producing these 
clones. We confirmed that anti-FLAG mAb (M2) rec-
ognized the FLAG-tagged nsp12 of SARS-CoV-2 in the 
position of the predicted size (~ 100 kDa) (Additional File 
1: Fig. S1). The screening of 24 mAb clones by western 
blotting analysis demonstrated that 6 clones (RdMab-1, 
-2, -13, -15, -16, and -20) could detect SARS-CoV-2 nsp12 
(Additional File 1: Fig. S1). To further evaluate whether 
they discriminate between nsp12 of SARS-CoV and 
SARS-CoV-2, we performed western blotting analysis 

Table 1 Subclass of RdMabs

Clone Immunogen Animal Subclass

HC LC

RdMab-1 #2, RHTFSNYQHEETIYNLLKDC Mouse IgG1 Kappa

RdMab-2 #3, TRALTAESHVDTDLTKPYIC Mouse IgG2a Kappa

RdMab-3 #1, AFDIYNDKVAGFAKFLKTNC Mouse IgM Kappa

RdMab-4 #2, RHTFSNYQHEETIYNLLKDC Mouse IgG1 Kappa

RdMab-5 #2, RHTFSNYQHEETIYNLLKDC Mouse IgG1 Kappa

RdMab-6 #3, TRALTAESHVDTDLTKPYIC Mouse IgG1 Kappa

RdMab-7 #1, AFDIYNDKVAGFAKFLKTNC Mouse IgG1 Lambda

RdMab-8 #2, RHTFSNYQHEETIYNLLKDC Mouse IgG1 Kappa

RdMab-9 #2, RHTFSNYQHEETIYNLLKDC Mouse IgG1 Kappa

RdMab-10 #2, RHTFSNYQHEETIYNLLKDC Mouse IgG1 Kappa

RdMab-11 #3, TRALTAESHVDTDLTKPYIC Mouse IgM Kappa

RdMab-12 #3, TRALTAESHVDTDLTKPYIC Mouse IgG1 Kappa

RdMab-13 #3, TRALTAESHVDTDLTKPYIC Mouse IgM Kappa

RdMab-14 #2, RHTFSNYQHEETIYNLLKDC Mouse IgG1 Kappa

RdMab-15 #2, RHTFSNYQHEETIYNLLKDC Mouse IgG1 Kappa

RdMab-16 #2, RHTFSNYQHEETIYNLLKDC Mouse IgG1 Kappa

RdMab-17 #3, TRALTAESHVDTDLTKPYIC Mouse IgG1 Kappa

RdMab-18 #1, AFDIYNDKVAGFAKFLKTNC Mouse IgG1 Lambda

RdMab-19 #1, AFDIYNDKVAGFAKFLKTNC Mouse IgG1 Lambda

RdMab-20 #3, TRALTAESHVDTDLTKPYIC Mouse IgG2b Kappa

RdMab-21 #3, TRALTAESHVDTDLTKPYIC Mouse IgM Kappa

RdMab-22 #3, TRALTAESHVDTDLTKPYIC Mouse IgG1 Kappa

RdMab-23 #1, AFDIYNDKVAGFAKFLKTNC Mouse IgM Kappa

RdMab-24 #1, AFDIYNDKVAGFAKFLKTNC Mouse IgG1 Lambda
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using 293T cells transiently expressing the FLAG-tagged 
nsp12 of SARS-CoV or SARS-CoV-2, suggesting that 
the culture supernatants of three clones (RdMab-2, -13, 
and -20) could specifically detect SARS-CoV-2 nsp12 
(Additional File 1: Fig. S2). Next, we purified these clones 
(RdMab-2, -13, and -20) from the hybridoma superna-
tants, which recognized SARS-CoV-2 nsp12 but not that 
of SARS-CoV (Fig.  1C). Together, we established three 
clones (RdMab-2, -13, and -20) which could specifically 
detect SARS-CoV-2 nsp12.

Application to immunoprecipitation assay 
and immunofluorescence cell staining
We next performed immunoprecipitation assay using 
lysates of 293T cells transiently expressing the FLAG-
tagged nsp12 of SARS-CoV-2. Immunoprecipitation with 
RdMab-2 successfully isolated the FLAG-tagged nsp12 of 
SARS-CoV-2 from the lysates (Fig. 2), whereas RdMab-13 
and -20 failed to isolate it by immunoprecipitation (data 
not shown). We confirmed using an isotype matched 
irrelevant control that the immune-complex precipi-
tated by the RdMab-2 is specific signal (Fig.  2). Finally, 
we applied RdMab-2 to immunostaining analysis. No sig-
nals were detected in non-transfected 293T cells (Fig. 3, 
upper). When we transiently overexpressed the nsp12 
in 293T cells, we found discrete signal of nsp12, which 
was spreading throughout the cytoplasm (Fig. 3, lower). 

Fig. 2 Immunoprecipitation of SARS-CoV-2 nsp12 using RdMab-2. 
SARS-CoV-2 nsp12 proteins were immunoprecipitated by RdMab-2 
from 293T cells transiently expressing a FLAG-tagged nsp12 of 
SARS-CoV-2, and then detected by an anti-FLAG antibody. Mouse 
 IgG2a was used as an isotype control for the immunoprecipitation

Fig. 3 Immunofluorescence imaging of SARS-CoV-2 nsp12 using RdMab-2. 293T cells transiently expressing a FLAG-tagged nsp12 protein of 
SARS-CoV-2 were immunostained with RdMab-2. Scale bar: 10 μm
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This results are consistent with previous reports that the 
RdRP reaction of CoVs, including SARS-CoV, is con-
ducted in the cytoplasm [17–19]. Together, these findings 
indicated the utility of RdMab-2 for immunoprecipita-
tion and immunofluorescence cell staining assays.

Discussion
The recent global pandemic of SARS-CoV-2 has caused 
catastrophic consequences [2, 3]. The research about 
infection with SARS-CoV-2 and the development of ther-
apeutic agents for COVID-19 is ongoing. Among several 
SARS-CoV-2 proteins, its RdRP protein, nsp12, is one of 
the crucial therapeutic targets, because it plays essential 
roles in viral RNA replication and transcription [7, 14]. In 
this study, we have established three novel mouse mAbs 
against SARS-CoV-2 nsp12 (RdMab-2, -13, and -20). 
They all detected SARS-CoV-2 nsp12 by western blotting 
analysis more specifically than that of SARS-CoV (Fig. 1). 
In addition, RdMab-2 were also suitable for immunopre-
cipitation (Fig. 2) and immunostaining analyses (Fig. 3).

Both SARS-CoV and SARS-CoV-2 use RdRP for viral 
replication and transcription, although the detailed 
transcription mechanism of CoVs remains unclear. It is 
assumed that the RdRP complex of SARS-CoV-2 executes 
two types of transcription; continuous transcription of 
the genomic RNA (gRNA) and discontinuous transcrip-
tion of various sizes of subgenomic RNAs (sgRNAs) 
[20, 21]. Regarding the discontinuous transcription, it is 
hypothesized that the RdRP can skip to the 3’-end leader 
sequence of the template gRNA from transcription-reg-
ulatory sequences (TRSs) located in the middle of gRNA 
[6, 20, 22, 23], although there has been no experimen-
tal evidence for the transcription mechanism of CoVs, 
including SARS-CoV-2. In addition, difference between 
the RdRP reactions of SARS-CoV and SARS-CoV-2 
remains unclarified. Therefore, the mAb that could dis-
tinguish nsp12 from SARS-CoV and SARS-CoV-2 would 
be potentially valuable to investigate difference between 
the RdRP reactions of SARS-CoV and SARS-CoV-2. 
RdMab-2 developed in the present study may contrib-
ute to the elucidation of this mechanism, because it has 
the potential for various biochemical and cell biological 
experiments.

While several rabbit polyclonal antibodies against 
nsp12 of SARS-CoV-2 are now commercially available 
from Cell Signaling Technology, Proteintech, GeneTex, 
and so on, no mAb against nsp12 of SARS-CoV-2 have 
been reported. Notably, Yamada et al. [24] reported that 
the mAb against nsp12 of SARS-CoV (clone 4E6; Novus 
Biologicals, Centennial, CO) can recognize nsp12 of 
SARS-CoV-2, although the signals from western blot-
ting analysis are faint. Since nsp12 of SARS-CoV and 
SARS-CoV-2 shares high amino acid sequence homology 

(~ 96%) (GenBank: NC_004718 and MN908947), it seems 
that the mAb against nsp12 of SARS-CoV (clone 4E6; 
Novus Biologicals, Centennial) can recognize nsp12 of 
both SARS-CoV and SARS-CoV-2. We now found that 
RdMab-2, -13, and -20 could specifically detect the nsp12 
of SARS-CoV-2 by western blotting analysis (Figs.  1, 2 
and 3). These novel anti-nsp12 mAbs would be the first 
mAb specialized in detection of SARS-CoV-2 nsp12.

In this study, we designed three peptides (#1–3) for 
producing mAbs, focusing on the structure around the 
NiRAN domain in the nsp12, because SARS-CoV-2 
nsp12 has a characteristic β-hairpin motif in the NiRAN 
domain, which was not found by structure analysis of 
SARS-CoV nsp12 [9]. Intriguingly, the established mAbs 
(RdMab-2, -13, and -20) were all obtained from mice 
immunized with the same peptide #3 (Table  1). The 
amino acid sequence of the peptide #3 derived of SARS-
CoV-2 nsp12 had lower homology (5 mutations/19 amino 
acids) to the corresponding sequence of SARS-CoV 
nsp12 than that of peptides #1 and #2 (1 mutation and 
2 mutations/19 amino acids). In addition, RdMab-2, -13, 
and -20 preferentially recognized nsp12 of SARS-CoV-2 
rather than that of SARS-CoV (Fig.  1C). These results 
suggests that the structure surrounding peptide #3 in the 
NiRAN domain might be unique to SARS-CoV-2 nsp12.

Taken together, we have successfully developed three 
novel mouse mAbs against SARS-CoV-2 nsp12 (RdMab-
2, -13, and -20), which are suitable for western blotting, 
immunoprecipitation, and immunostaining analyses. 
These novel anti-nsp12 mAbs were able to discriminate 
between nsp12 of SARS-CoV and SARS-CoV-2. Gener-
ally, elucidation of specific protein functions critically 
depends on the ability to recognize the target protein 
specifically, and we obtained mAbs that could specifically 
recognize SARS-CoV-2 nsp12. These novel anti-nsp12 
mAbs could be utilized for investigation of the RdRP 
reaction of SARS-CoV-2 and responses against it in host 
cells. In this study, we could develop mAbs against SARS-
CoV-2 nsp12 as an initial step. We hope that further stud-
ies using these anti-nsp12 mAbs will lead to elucidation 
of the RdRP reactions of SARS-CoV-2 and development 
of more effective anti-viral strategies.
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